K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
1/ Kẻ $CH \perp AB (H \in AB) \\
NK \perp AB ( K \in AB)$
Xét $\triangle{ACH}$ vuông tại $H$ có :
$NK // CH$ ( cùng $\perp AB$ )
$\implies \dfrac{NK}{CH} = \dfrac{AN}{AC} = \dfrac13$ ( Hệ quả Ta-lét )
Ta có : $\dfrac{S_{ANM}}{S_{ABC}} = \dfrac{ \dfrac12.AM.NK}{ \dfrac12.AB.CH} = \dfrac{AM}{AB}.\dfrac{NK}{CH} = \dfrac23.\dfrac13 = \dfrac29$
$\implies S_{AMN} = \dfrac29.S_{ABC} = 12 \; (cm^2)$
2/ Gọi $a,b,c$ lần lượt là độ dài hai cạnh góc vuông và cạnh huyền
Theo đề bài ta có : $a-7=b$
Lại có : $S = \dfrac12.a.b = 30 \; (cm^2)$
$\iff a.(a-7) = 60 \\
\iff a^2-7a-60 = 0 \\
\iff \cdots \\
\iff (a-12)(a+5) = 0 \\
\iff \left[ \begin{array}{l} {} a-12=0 \\ a+5=0 \\ \end{array}
ight. \\
\iff \left[ \begin{array}{l} {} a=12 \\ a=-5 \; \textrm{( loại vì độ dài một cạnh của tam giác không thể âm )} \\ \end{array}
ight. \\
\implies b = a-7 = 12-7 = 5$
Áp dụng định lý Pytago
Tính được $c = \sqrt{a^2+b^2} = 13$
Lại có : $S = \dfrac12.c.AH = 30 \; (cm^2)$
$\implies AH = \dfrac{60}c = \dfrac{60}{13} \approx 4,62 \; (cm^2)$
3/ Do hình vuông cũng là hình thoi
Nên diện tích hình vuông nhận $AB$ làm đường chéo là :
$S = \dfrac12.AB.AB = 98 \; (cm^2) \\
\implies AB^2 = 196 \\
\implies AB = 14 \\
\implies P_{ABCD} = 14.4 = 54 \; (cm^2)$
4/ Dễ cm $\dfrac{AM}{AB} = \dfrac13$
Xét $\triangle{ABC}$ có :
$MN // BC$ ( gt )
$\implies \triangle{AMN} \sim \triangle{ABC}$
Mà $\dfrac{AM}{AB} = \dfrac13$ (cmt)
$\implies$ tỉ số đồng dạng $k = \dfrac13$
$\implies$ tỉ số diện tích $= k^2 = \dfrac19$
$\iff \dfrac{S_{AMN}}{S_{ABC}} = \dfrac19 \\
\implies S_{AMN} = \dfrac19.S_{ABC} = \dfrac19.126 = 14 \; (cm^2)$
5/ Đề chưa rõ
Lộn tiệm