Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh tứ giác AEDF là hình thoi
Þ EF là phân giác của A E D ^
Xét tư giác AEDF có
DF//AE; DE//AF => AEDF là hình bình hành
Gọi O là giao của AD và EF => IA=ID và IE=IF
Xét tg AEFF có
IE=IF => AI là đường trung tuyến của tg AEF
mà AI là phân giác của \(\widehat{BAC}\)
=> tg AEF cân tại A (tg có đường trung tuyến đồng thời là đường phân giác thì tg đó là tg cân) \(\Rightarrow AD\perp EF\) (trong tg cân đường trung tuyến đồng thời là đường cao)
=> AEDF là hình thoi (Hình bh có hai đường chéo vuông góc nhau là hình thoi
=> EA=ED
Xét tg AEI và tg DEI có
EA=ED
IA=ID
EI chung
=> tg AEI=tgDEI (c.c.c) \(\Rightarrow\widehat{AEF}=\widehat{DEF}\) => EF là phân giác của \(\widehat{AED}\)
a. Xét tam giác ABC có:
DE//BC (gt)
=>\(\dfrac{DA}{DB}=\dfrac{EA}{EC}\)(định lý Ta-let) (1)
Xét tam giác ADE có:
AD//CF (gt)
=>\(\dfrac{EA}{EC}=\dfrac{DE}{EF}\)(định lý Ta-let) (2)
Từ (1) và (2) suy ra:\(\dfrac{DA}{DB}=\dfrac{ED}{FE}\)
a: Xét tứ giác BFED có
BF//ED
FE//BD
DO đó: BFED là hình bình hành
Suy ra: BF=ED(1)
Xét ΔEAD có góc EAD=góc EDA
nên ΔEAD cân tại E
=>EA=ED(2)
Từ (1) và (2) suy ra BF=EA
b: góc GAE=90 độ-góc DAE
góc EGA=90 độ-góc EDA
mà góc DAE=góc EDA
nên góc GAE=góc EGA
=>ΔEAG cân tại E
=>EA=EG=ED
=>E là trung điểm của DG