Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:Áp dụng định lý Menelaus với tam giác $AMC$ có $B,I,D$ thẳng hàng:
$\frac{AD}{DC}.\frac{IM}{IA}.\frac{BC}{BM}=1$
$\Leftrightarrow \frac{AD}{DC}.2.3=1$
$\Leftrightarrow \frac{AD}{DC}=\frac{1}{6}$
$\Rightarrow \frac{AD}{DC}=\frac{1}{7}$
Xét ΔABC có
M∈AB(gt)
N∈AC(gt)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(gt)(1)
Do đó: MN//BC(Định lí Ta lét đảo)
Suy ra: MK//BI và NK//CI
Xét ΔABI có
M∈AB(gt)
K∈AI(gt)
MK//BI(Gt)
Do đó: \(\dfrac{AM}{AB}=\dfrac{MK}{BI}\)(Hệ quả của Định lí Ta lét)(2)
Xét ΔACI có
K∈AI(gt)
N∈AC(gt)
KN//IC(cmt)
Do đó: \(\dfrac{AN}{AC}=\dfrac{KN}{IC}\)(Hệ quả của Định lí Ta lét)(3)
Từ (1), (2) và (3) suy ra \(\dfrac{MK}{BI}=\dfrac{NK}{CI}\)
mà BI=CI(I là trung điểm của BC)
nên MK=NK(đpcm)
N là trung điểm BC \(\Rightarrow BN=\dfrac{1}{2}BC\)
Kẻ đường cao AD và ME ứng với BC
Do AD và ME cùng vuông góc BC \(\Rightarrow AD||ME\)
Áp dụng định lý Talet:
\(\dfrac{ME}{AD}=\dfrac{BM}{BA}=\dfrac{1}{3}\Rightarrow ME=\dfrac{1}{3}AD\)
Ta có:
\(\dfrac{S_{BMN}}{S_{ABC}}=\dfrac{\dfrac{1}{2}.ME.BN}{\dfrac{1}{2}AD.BC}=\dfrac{\dfrac{1}{3}AD.\dfrac{1}{2}BC}{AD.BC}=\dfrac{1}{6}\)