Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác AMCD có
N là trung điểm của AC
N là trung điểm của MD
Do đó: AMCD là hình bình hành
Suy ra: CD//AM
hay CD//AB
a: Xét tứ giác ABCD có
N là trung điểm của AC
N là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN=1/2BC
Chứng minh:
Tam giác ABC có:
M là trung điểm của AB( theo giả thiết)
N là trung điểm của AC( theo giả thiết)
=>MN là đường trung bình của tam giác ABC
=> MN=1/2 BC
Chứng minh định lý:
Trên tia đối của tia NM lấy điểm D sao cho N là trung điểm của MD
Xét tam giác ANM và tam giác CND
Ta có:
AN=NC( theo giả thiết)
Góc ANM=gócCND( hai góc đối đỉnh)
NM=ND(cách vẽ)
Do đó:
Tam giác ANM = tam giác CND( c.g.c)
=> AM=CD( hai cạnh tương ứng)
Và góc A= góc MCD(hai góc tương ứng)
=> AM//CD
=> MB//CD
=> MBCD là hình thang
Lại có:
AM=CD
=> MD=BC và MD//BC
=> MN//BC
Mà N là trung điểm của MD(cách vẽ)
=> MN=1/2 MD
a.Xét ΔAMN và ΔCDN có:
AN=CN (do N là trung điểm của AC)
ANM=CND (2 góc đối đỉnh)
MN=DN (do cách lấy điểm D)
=>ΔAMN=ΔCDN (c.g.c)
=>AM=CD (2 cạnh tương ứng)
Mà AM=MB (do M là trung điểm của AB)
=>MB=CD (=AM)
Mặt khác: ΔAMN=ΔCDN (cmt)
=>AMN=CDN (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong nên:
=>AM//CD hay MB//CD
b.Nối MC
Xét ΔBMC và ΔDCM có:
MC chung
BMC=DCM (2 góc so le trong, do MB//CD)
BM=DC (cm câu a)
=>ΔBMC=ΔDCM (c.g.c)
=>BC=DM (2 cạnh tương ứng)
Lại có: MN=12DM (gt)
=>MN=12BC
Mặt khác: ΔBMC=ΔDCM (cmt)
=>BCM=DMC (2 góc tương ứng)
Mà hai góc này nằm ở vị trí so le trong nên:
=>MD//BC hay MN//BC.
a: Xét tứ giác ABCD có
N là trung điểm của AC
N là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD=BC
Xét tứ giác ABCN có
E là trung điểm chung của AC và BN
nên ABCN là hình bình hành
=>AN//BC
Xét tứ giác AMCD có
N là trung điểm của AC
N là trung điểm của MD
Do đó: AMCD là hình bình hành
Suy ra: CD//AM
hay CD//AB