Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBAD có BA=BD(gt)
nên ΔBAD cân tại B(Định nghĩa tam giác cân)
Suy ra: \(\widehat{BAD}=\widehat{BDA}\)(hai góc ở đáy)
b) Ta có: \(\widehat{CAD}+\widehat{BAD}=90^0\)(tia AD nằm giữa hai tia AB,AC)
\(\widehat{HAD}+\widehat{HDA}=90^0\)(ΔHAD vuông tại H)
mà \(\widehat{BAD}=\widehat{HDA}\)(cmt)
nên \(\widehat{CAD}=\widehat{HAD}\)
hay AD là tia phân giác của \(\widehat{HAD}\)
c) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))
Do đó: ΔAHD=ΔAKD(Cạnh huyền-góc nhọn)
Suy ra: AH=AK(hai cạnh tương ứng)
a)Xet ΔABD va ΔEBD co:
AB=EB(GT)
∠ABD = ∠EBD(BD la tia phan giac ∠ABE)
BD chung
⇒ΔABD = ΔEBD(c.g.c)
b)theo cau a co :ΔABD = ΔEBD
⇒DA=DE(2 canh tuong ung)
c)theo cau a co:ΔABD = ΔEBD
⇒∠BAD=∠BED( 2 goc tuong ung)
Ma ∠BAD=90do
⇒∠BED = 90do
\(D\in AC\) sao lại tính góc ACD được
Tớ hơi nghi ngờ đề toán của cậu.
tớ nghĩ đề đúng của nó là
Cho tam giác ABC vuông tại A. AC = 3AB. Trên AC lấy D ( D thuộc AC ) sao cho AD = 2 AB. Chứng minh góc ADB + ACD = 450