Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔMDF có
E là trung điểm của MD
C là trung điểm của MF
Do đó:EC là đường trung bình
=>EC//DF
hay DN//EC
Xét ΔAEC có
D là trung điểm của AE
DN//EC
Do đó: N là trung điểm của AC
Xét ΔABC có
AM là đương trung tuyến
AE=2/3AM
Do đó: E là trọng tâm
mà N là trung điểm của AC
nên B,E,N thẳng hàng
a) Xét ΔABM và ΔFCM có
AM=FM(gt)
\(\widehat{AMB}=\widehat{FMC}\)(hai góc đối đỉnh)
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔFCM(c-g-c)
b) Xét ΔBMF và ΔCMA có
BM=CM(M là trung điểm của BC)
\(\widehat{BMF}=\widehat{CMA}\)(hai góc đối đỉnh)
FM=AM(gt)
Do đó: ΔBMF=ΔCMA(c-g-c)
nên \(\widehat{FBM}=\widehat{ACM}\)(hai góc tương ứng)
mà \(\widehat{FBM}\) và \(\widehat{ACM}\) là hai góc ở vị trí so le trong
nên BF//AC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: ΔABM=ΔFCM(cmt)
nên \(\widehat{ABM}=\widehat{FCM}\)(hai góc tương ứng)
mà \(\widehat{ABM}\) và \(\widehat{FCM}\) là hai góc ở vị trí so le trong
nên AB//CF(Dấu hiệu nhận biết hai đường thẳng song song)
đề bài phần a bị sai nhé bn , phải là BE // AC mới đúng
a ) Xét tam giác AMC và tam giác EMB có :
MA = ME ( gt )
\(\widehat{EMB}=\widehat{AMC}\) ( hai góc đối đỉnh )
MB = MC ( do AM là đường trung tuyến )
nên tam giác AMC = tam giác EMB ( c.g.c )
=> \(\widehat{CAM}=\widehat{MEB}\)
Mà hai góc này ở vị trí so le trong => BE//AC
Bạn tự vẽ hình nha
a.
Xét tam giác MBE và tam giác MCA có:
MB = CM (AM là trung tuyến của tam giác ABC => M là trung điểm của BC)
BME = CMA (2 góc đối đỉnh)
AM = EM (gt)
=> Tam giác MBE = Tam giác MCA (c.g.c)
=> BE = CA (2 cạnh tương ứng)
=> MEB = MAC (2 góc tương ứng)
mà 2 góc này ở vị trsi so le trong
=> BE // AC
b.
BE // AC (theo câu a)
=> AFD = BED (2 góc so le trong)
Xét tam giác DFA và tam giác DEB có:
AFD = BED (chứng minh trên)
DF = DE (gt)
FDA = EDB (2 góc đối đỉnh)
=> Tam giác DFA = Tam giác DEB (g.c.g)
=> FA = EB (2 cạnh tương ứng)
mà EB = AC (theo câu a)
=> FA = AC
=> A là trung điểm của FC
c.
Tam giác ABC có:
AB < AC (gt)
mà AC = EB (theo câu a)
=> AB < EB
=> BEM < BAM (quan hệ giữa góc và cạnh đối diện trong tam giác)
mà BEM = CAM (tam giác MBE = tam giác MCA)
=> CAM < BAM
Chúc bạn học tốt
Phương An giúp mình làm bài hình còn lai được không?
đề nè
cho góc nhọn xOy; trên tia Ox lấy A(A#O); trên tia Oy lấy điểm B (B # O)sao cho OA = OB; kẻ ACvuông góc với OY (CE Oy) ; BD vuông góc Ox ( D E Ox); I là giao diểm của AC và BD
a. chứng minh tam giác AOC= tam giác BOD
b. So sánh IC và IA
c. Chứng minh tam giác AIB cân
d. Chứng minh góc IAB=M góc 1\2 góc AOB
bài 2
a) tam giác ABC cân ở A
=> góc B=góc C
đường cao AD đồng thời là đường trung tuyến
=> DB=DC
xét 2 tam giác BED và CFD có:
BED=CFD(=90độ)
góc B=góc C(chứng minh trên)
BD=CD(chưng minh trên)
=> 2 tam giác BED=CFD(cạnh huyền -góc nhọn)
=> BE=CF(2 cạnh tương ứng)
b)tam giác ABC cân có đường cao đồng thời là tia phân giác
=> góc BAD=góc CAD
AB=AC(gt)
mà BE=CF
AB=AE+BE
AC=AF+CF
=> AE=AF
=> tam giác EAF can ở A có tia phân giác AD đồng thời là đường trung trực của EF
c)ta có : 2 tam giác BED=CFD(theo a)
=> DE=DF(2 cạnh tương ứng)
mà trong 1 tam giác có đường trung tuyến ứng với 1 cạnh =1/2 cạnh đó thì tam giác đó vuông
xét tam giác AFM có FD=ED=DM
=> FD=1/2 EM
=> tam giác AFM vuông ở F
d) xét tam giác BED và CMD có:
DE=DM (gt)
góc EDB=góc NDC(đối đỉnh)
DB=DC(vì AD là đường trung tuyến của BC)
=> 2 tam gica BAD=CMD(c.g.c)
=> góc BED=góc CMD=90độ(2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> BE//CM
a)Vì ΔABCΔABC cân tại A => Bˆ=Cˆ
mà AD là đường cao
=> AD là đường trung tuyến ΔABC
=> BD = DC
Xét ΔBED và
BD = DC (cmt)
Bˆ=Cˆ(cmt)
Do đó: ΔBED=ΔCFD(ch−gn)
=> BE = CF (hai cạnh tương ứng)
b) Vì ΔBED=ΔCFD(cmt)
=> ED = DF (hai cạnh tương ứng)
=> ΔEDFcân tại D
=> D ∈ đường trung trực cạnh EF (1)
Xét ΔAEDΔvà ΔAFD có:
AD (chung)
AEDˆ=AFDˆ(=90)
ED = DF (cmt)
Do đó: ΔAED=ΔAFD(cạnh huyền- cạnh góc vuông)
=> AE = AF(hai cạnh tương ứng)
=> ΔAEFcân tại A
=> A ∈ đường trung trực cạnh EF (2)
(1); (2) => AD là đường trung trực cạnh EF
c) ta có: AD ⊥ BC và AD⊥EF
=> BC // EF
Gọi giao điểm của FM và DC là H ta có:
Xét ΔBEDΔBED và có:
ED = DM (gt)
EDBˆ=CDM(đối đỉnh)
BD = DC (cmt)
Do đó: ΔBED=ΔCMD (c-g-c)
mà ΔBED=ΔCFD
=> ΔCMD=ΔCFD
=> CF = CM (hai cạnh tương ứng)
=> ΔFCM cân tại C
=> C ∈đường trung trực cạnh FM (1)
DE = DF (cmt)
mà DE = DM
=> DF = DM
=> ΔFDMcân tại D
=> D ∈ đường trung trực cạnh FM (2)
(1); (2) => DC là đường trung trực cạnh FM
=> DH ⊥⊥ FM
mà BC // EF
=> EF ⊥
=> EFMˆ=900hay ΔEFM vuông tại F
d) Vì ΔBED=ΔCMD
=> BEDˆ=CMDˆ=900hai góc tương ứng)
=> BE//CM(so le trong)
I/ Kiến thức cần nhớ
- Công thức tính diện tích tam giác: S = a x h : 2
Trong đó: S là diện tích tam giác,
a là số đo của đáy (lấy đáy là một trong 3 canh của tam giác)
h là số đo chiều cao ứng với đáy (Chiều cao của tam giác là đoạn thẳng hạ từ đỉnh xuống đáy và vuông góc với đáy)
- Công thức liên quan: h = S x 2 : a ; a = S x 2 : h
II/ Các ví dụ
Ví dụ 1:
Cho tam giác ABC (như hình vẽ) có độ dài đáy BC = 16, diện tích tam giác là 200 cm2. Vẽ chiều cao AH và tính AH.
ABCH
Giải:
+) Đáy là BC thì chiều cao là đoạn thẳng xuất phát từ A và vuông góc với BC.
+) Áp dụng công thức tính chiều cao h = S x 2 : a.
Độ dài chiều cao AH là: 200 x 2 : 16 = 25 (cm)
Đáp số: 25 cm
Nhận xét :
- Không phải lúc nào chiều cao cũng nằm trong tam giác.
- Khi tính diện tích tam giác, cần lưu ý: Chiều cao nào thì phải ứng với đáy đó.(Trong ví dụ 1, đáy là BC thì chiều cao là AH).
-----------------------
Ví dụ 2:
Cho tam giác ABC có diện tích là 45 cm2. D là trung điểm của cạnh AB. Trên cạnh AC lấy điểm E sao cho AE gấp đôi EC. Tính diện tích tam giác AED.
Giải:
ABCHDE
Nối B với E. Vẽ EH vuông góc với AB.
Ta có
SABE = 12 x EH x AB
SADE = 12 x EH x AD
= 12 x EH x 12 x AB (vì AD = 12 x AB)
= 12 x SABE (1)
Tương tự, ta có: ABE và ABC là hai tam giác có chung chiều cao hạ từ đỉnh B mà đáy AE = 23 x AC
Suy ra: SABE = 23 x SABC (2) .
Từ (1) và (2) ta có SADE = 12 x 23 x SABC = 13 x 45 = 15 (cm2)
Đáp số : 15 cm2
Nhận xét:
- Ta có thể tính diện tích tam giác bằng cách tìm mối quan hệ giữa các tam giác.
+ Nếu hai tam giác có chung chiều cao (hoặc chiều cao bằng nhau) thì diện tích của chúng tỉ lệ với hai cạnh đáy .
+ Nếu hai tam giác có chung đáy (hoặc đáy bằng nhau) thì diện tích của chúng tỉ lệ với hai đường cao tương ứng.
- Lưu ý: Ưu tiên nối thêm hình và chọn đáy là những cạnh có chia tỉ lệ. (Ở ví dụ 2, ta cũng có thể nối D với C).
Câu hỏi của bggvf - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại link bên trên nhé.