Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta BDC\)vuông tại B có BD = BC
\(\Rightarrow\Delta BDC\)vuông cân tại B
\(\Rightarrow\widehat{BDC}=\widehat{BCD}=45^o\)
Ta có \(\widehat{BAD}+\widehat{ADC}+\widehat{DCB}+\widehat{CBA}=360^o\)
\(\Leftrightarrow90^o+90^o+45^o+\widehat{CBA}=360^o\)
\(\Leftrightarrow\widehat{CBA}=135^o\)
b) Ta có : \(\widehat{ADB}+\widehat{BDC}=\widehat{ADC}\)
\(\Leftrightarrow\widehat{ADB}+45^o=90^o\)
\(\Leftrightarrow\widehat{ADB}=45^o\)
Mà \(AB//CD\Rightarrow\widehat{ABD}=\widehat{BDC}=45^o\)
\(\Rightarrow\widehat{ADB}=\widehat{ABD}\left(=45^o\right)\)
\(\Rightarrow\Delta ABD\)vuông cân tại A
Áp dụng định lí Py-ta-go cho tam giác ABD ta được :
\(AB^2+AD^2=BD^2\)
\(\Leftrightarrow3^2+3^2=BD^2\)
\(\Leftrightarrow BD^2=18\)
\(\Leftrightarrow BD=\sqrt{18}\left(cm\right)\)
\(\Rightarrow BC=BD=\sqrt{18}\left(cm\right)\)
Áp dụng định lí Py-ta-go cho tam giác BDC vuông cân tại B ta được :
\(\sqrt{18}^2+\sqrt{18}^2=CD^2\)
\(\Leftrightarrow CD^2=36\)
\(\Leftrightarrow CD=6\left(cm\right)\)
Độ dài \(BC.CD=6.\sqrt{18}=18\sqrt{2}\left(cm\right)\)
Lời giải:
a. $BD\perp BC, BD=BC$ nên tam giác $BDC$ vuông cân tại $B$
$\Rightarrow \widehat{C}=45^0$
$\widehat{ABC}=180^0-\widehat{C}=180^0-45^0=135^0$
b.
Ta có: $\widehat{ABD}=\widehat{ABC}-\widehat{DBC}=135^0-90^0=45^0$ nên tam giác $ABD$ vuông cân tại $A$
$\Rightarrow AD=AB=3$
Áp dụng định lý Pitago:
$BD=\sqrt{AB^2+AD^2}=\sqr{3^2+3^2}=3\sqrt{2}$ (cm)
$BC=BD=3\sqrt{2}$ (cm)
Tam giác $BDC$ vuông cân tại $B$ nên áp dụng định lý Pitago:
$DC=\sqrt{BC^2+BD^2}=\sqrt{(3\sqrt{2})^2+(3\sqrt{2})^2}=6$ (cm)