Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
a) Xét \(\Delta\)ABH và \(\Delta\)ACH có :
AB = AC(vì \(\Delta\)ABC cân ở A)
\(\widehat{B}=\widehat{C}\)( \(\Delta\)ABC cân ở A)
=> \(\Delta\)ABH = \(\Delta\)ACH(cạnh huyền - góc nhọn)
b) Có \(\Delta\)ABH = \(\Delta\)ACH(cmt)
=> \(\widehat{BAH}=\widehat{CAH}\)
=> AH là tia phân giác của \(\widehat{BAC}\)
Hình vẽ :
Chú ý:Góc ngoài tam giác bằng tổng số đo 2 góc trog tam giác không kể với nó
Vậy góc(A1)+góc(A2)=góc(B)+góc(C) .(1)
Do Am là tia phân giác ngoài tại đỉnh A của tam giác ABC nên góc A1=góc (A2).(2)
Lại có tam giác ABC cân tại A do(AB=AC) nên góc (B)=góc(C).(3)
Từ(1);(2) và (3) =>góc(A1)+góc (A1)=góc (C)+góc(C)
Suy ra góc( A1)=góc(C) mà 2 góc này nằm ở vị ttrí so le nhau
Do đó Am//BC . (dpcm)