Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(AE\cdot EB=HE^2\)
b: Xét tứ giác AEHF có
\(\widehat{FAE}=\widehat{AFH}=\widehat{AEH}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: FE=AH và \(\widehat{FHE}=90^0\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(AF\cdot FC=FH^2\)
Áp dụng định lí Pytago vào ΔFHE vuông tại H, ta được:
\(HF^2+HE^2=FE^2\)
\(\Leftrightarrow AH^2=AE\cdot EB+AF\cdot FC\)
1) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{9+16}=\sqrt{25}=5\)(cm)
BH \(=\dfrac{AB^2}{BC}=\dfrac{9}{5}\)(cm)
\(CH=\dfrac{AC^2}{BC}=\dfrac{16}{5}\left(cm\right)\)
\(AH=\dfrac{AB.AC}{BC}=\dfrac{12}{5}\left(cm\right)\)
2) a) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được điều phải chứng minh.
b)Chứng minh tương tự câu a), ta được:
AF.FC=HF^2
Lại có:
Tứ giác AFHE có 3 góc vuông nên từ giác AFHE là hình chữ nhật.
Suy ra, HF = AE
Suy ra, AF.FC=AE^2
Mà AE.EB=HE^2
Nên AF.FC+AE.EB=AE^2+HE^2=AH^2(đpcm)
3) Áp dụng hệ thức về cạnh và góc trong tam giác, ta được:
\(BE=\cos B.BH=\cos B.\left(\cos B.AB\right)=\cos^2B.AB=\cos^2B.\left(\cos B.BC\right)=\cos^3.BC\left(đpcm\right)\)
1: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>BC=5(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot5=3\cdot4=12\)
=>AH=2,4(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot CA=CA^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{3^2}{5}=1,8\left(cm\right)\\CH=\dfrac{4^2}{5}=3,2\left(cm\right)\end{matrix}\right.\)
2: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>AH=EF
Xét ΔHAB vuông tại H có HE là đường cao
nên \(AE\cdot EB=HE^2\)
Xét ΔHAC vuông tại H có HF là đường cao
nên \(AF\cdot FC=HF^2\)
\(AE\cdot EB+AF\cdot FC=HE^2+HF^2=EF^2=AH^2\)
3: Xét ΔBAC vuông tại B có \(cosB=\dfrac{BA}{BC}\)
Xét ΔBHA vuông tại H có \(cosB=\dfrac{BH}{BA}\)
Xét ΔBEH vuông tại E có \(cosB=\dfrac{BE}{BH}\)
\(cos^3B=cosB\cdot cosB\cdot cosB\)
\(=\dfrac{BA}{BC}\cdot\dfrac{BH}{BA}\cdot\dfrac{BE}{BH}=\dfrac{BE}{BC}\)
=>\(BE=BC\cdot cos^3B\)
1:
BC=căn AB^2+AC^2=5cm
Xét ΔABC vuông tại A có AH là đường cao
nên BH*BC=BA^2; CH*CB=CA^2
=>HB=3^2/5=1,8cm; CH=4^2/5=3,2cm
AH=căn 1,8*3,2=2,4(cm)
2: ΔAHB vuông tại H có HE là đường cao
nên AE*EB=HE^2
ΔAHC vuông tại H có HF là đường cao
nên AF*FC=HF^2
Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
AE*EB+AF*FC
=HE^2+HF^2
=EF^2
=AH^2
4:
BE*BA+CF*CA+2*HB*HC
=BH^2+CH^2+2*HB*HC
=(BH+CH)^2=BC^2
a) \(AH^2=BH.CH=3,6.6,4=23,04\)
\(\Rightarrow AH=4,8\left(cm\right)\)
\(AC^2=AH^2+HC^2=23,04+40,96=64\)
\(\Rightarrow AC=8\left(cm\right)\)
\(AB^2=AH^2+BH^2=23,04+12,96=36\)
\(\Rightarrow AB=6\left(cm\right)\)
\(BC=BH+CH=3,6+6,4=10\left(cm\right)\)
\(tanB=\dfrac{8}{6}=\dfrac{4}{3}\Rightarrow B=53^o\)
\(\Rightarrow C=90^o-53^o=37^o\)
b) Xét Δ vuông ABH, có đường cao DH ta có :
\(AH^2=AD.AB\left(1\right)\)
Tương tự Δ vuông ACH :
\(AH^2=AE.AC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow AD.AB=AE.AC\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
c: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot4.5}{2}=3\cdot4.5=13.5\left(cm^2\right)\)
a/ Ta có: + AB2 + AC2 = 62 + 82 = 100
+ BC2 = 102 = 100
=> AB2 + AC2 = BC2 = 100
=> tam giác ABC vuông tại A theo định lí pytago
b/ 4 ý này trong sách hình học 9 có CM nha bạn
c/ AH.BC = AB.AC
=> AH = \(\frac{AB.AC}{BC}=\frac{6.8}{10}=6,8\)cm
AB2= BC.BH
=> BH= \(\frac{AB^2}{BC}\)= \(\frac{6^2}{10}\)
= 3,6 cm
AC2 = BC.CH
=> CH= \(\frac{AC^2}{BC}=\frac{8^2}{10}=6,4cm\)
cái này toàn dùng tam giác đồng dạng để cm thôi