Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEF có
H,M lần lượt là trung điểm của AE,AF
nên HM là đường trung bình
=>HM//EF
=>EF vuông góc với AE
Ta có: ΔAEF vuông tại E
mà EM là đường trung tuyến
nên EM=MF
b: Xét tứ giác ABFC có
M là trung điểm chung của FA và BC
nên ABFC là hình bình hành
Suy ra: AB=FC
Xét ΔBAE có
BH là đường cao, là đường trung tuyến
nên ΔBAE cân tại B
=>BA=BE=CF
c: Vì ABFC là hình bình hành
nên AC//BF
d: Vì EF//HM
nên EF//BC
a/ Xét 2 tam giác EMC và tam giác AMB có:
BM=MC (gt)
AM=ME (gt)
Góc AMB=góc EMC (2 góc đối đỉnh)
=> tam giác EMC = tam giác AMB (Cạnh-góc-cạnh)
=> AB=EC (2 cạnh tương ứng)
b/ Xét tam giác ADE có:
AH=HD (gt)
AM=ME (gt)
=> HM là đường trung bình của tam giác ADE => HM//DE => AD vuông góc DE (1)
và DE/2=HM (Tính chất đường trung bình)
Mà DF=FE=DE/2
=> DF=HM=DE/2 (2)
Từ (1) và (2) => Tứ giác HMFD là hình chữ nhật => MF vuông góc DE
c/ MF//DH (cmt)
=> MF//AD
a: Xét ΔAEF có
H,M lần lượt là trung điểm của AE,AF
nên HM là đường trung bình
=>HM//EF
=>EF vuông góc với AE
Ta có: ΔAEF vuông tại E
mà EM là đường trung tuyến
nên EM=MF
b: Xét tứ giác ABFC có
M là trung điểm chung của FA và BC
nên ABFC là hình bình hành
Suy ra: AB=FC
Xét ΔBAE có
BH là đường cao, là đường trung tuyến
nên ΔBAE cân tại B
=>BA=BE=CF
c: Vì ABFC là hình bình hành
nên AC//BF
d: Vì EF//HM
nên EF//BC
a, áp dụng tổng 3 góc trong 1 tam giác => góc AB= 25 độ
AC < AB ( 65 độ > 25 độ)
b, Xét tam giác BHC và tam giác BHE có: BH- chung ; BHA = BHE (=90 độ) ; AH = HE ( theo đề bài)
=> hai tam giác bằng nhau (c.g.c) => BA = BE => tam giác BEA cân tại B (đpcm)
c, Dễ dàng chứng minh được tam giác BEC = tam giác BAC
=> BEC = BAC = 90 độ
=> tam giác BEC vuông tại E (đpcm)
d, Ta có: MH đi qua trung điểm của AD và AE trong tam giác ADE => NM là đường trung bình của tam giác này => MN // DE (đpcm)