Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E H M
a/ Xét 2 tam giác EMC và tam giác AMB có:
BM=MC (gt)
AM=ME (gt)
Góc AMB=góc EMC (2 góc đối đỉnh)
=> tam giác EMC = tam giác AMB (Cạnh-góc-cạnh)
=> AB=EC (2 cạnh tương ứng)
b/ Xét tam giác ADE có:
AH=HD (gt)
AM=ME (gt)
=> HM là đường trung bình của tam giác ADE => HM//DE => AD vuông góc DE (1)
và DE/2=HM (Tính chất đường trung bình)
Mà DF=FE=DE/2
=> DF=HM=DE/2 (2)
Từ (1) và (2) => Tứ giác HMFD là hình chữ nhật => MF vuông góc DE
c/ MF//DH (cmt)
=> MF//AD
a) Xét 2 \(\Delta\) vuông \(AHM\) và \(EHM\) có:
\(\widehat{AHM}=\widehat{EHM}=90^0\)
\(AH=EH\left(gt\right)\)
Cạnh HM chung
=> \(\Delta AHM=\Delta EHM\) (2 cạnh góc vuông tương ứng bằng nhau)
=> \(AM=EM\) (2 cạnh tương ứng)
Mà \(AM=MF\left(gt\right)\)
=> \(EM=MF.\)
b) Theo câu a) ta có \(\Delta AHM=\Delta EHM.\)
=> \(\widehat{AMH}=\widehat{EMH}\) (2 góc tương ứng)
Mà \(\widehat{AMH}=\widehat{FMC}\) (vì 2 góc đối đỉnh)
=> \(\widehat{EMH}=\widehat{FMC}\)
hay \(\widehat{EMB}=\widehat{FMC}.\)
Xét 2 \(\Delta\) \(BME\) và \(CMF\) có:
\(BM=CM\) (vì M là trung điểm của \(BC\))
\(\widehat{BME}=\widehat{CMF}\left(cmt\right)\)
\(ME=MF\left(cmt\right)\)
=> \(\Delta BME=\Delta CMF\) (c . g . c)
=> \(BE=CF\) (2 cạnh tương ứng)
c) Xét 2 \(\Delta\) \(AMC\) và \(FMB\) có:
\(AM=FM\left(gt\right)\)
\(\widehat{AMC}=\widehat{FMB}\) (vì 2 góc đối đỉnh)
\(MC=MB\) (như ở trên)
=> \(\Delta AMC=\Delta FMB\) (c . g . c)
=> \(\widehat{ACM}=\widehat{FBM}\) (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> \(AC\) // \(BF.\)
Còn câu d) thì mình đang nghĩ nhé bạn.
Chúc bạn học tốt!
M A B C N H F D
a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:
^AHB = ^DHB ( 1v )
HA = HD ( giả thiết )
MH chung
=> \(\Delta\)AHB = \(\Delta\)DHB ( c.g.c)
b) Từ (a) => ^ABH = ^DHB => BH là phân giác ^ABD
Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC
=> BC là phân giác ^ABD
c) NF vuông BC
AH vuông BC
=> NF // AH
=> ^NFM = ^HAM ( So le trong )
Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )
=> \(\Delta\)NFM = \(\Delta\)HAM ( g.c.g)
=> NF = AH ( 2)
Từ ( a) => AH = HD ( 3)
Từ (2) ; (3) => NF = HD
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
a) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên nó là tam giác cân.
Vậy thì MA = ME. Lại có MA = MF nên ME = MF.
b) Do AME là tam giác cân, MH là đường cao nên MH cũng là phân giác.
Vậy thì \(\widehat{AMB}=\widehat{BME}\)
Mà \(\widehat{AMB}=\widehat{CMF}\Rightarrow\widehat{BME}=\widehat{CMF}\)
Xét tam giác BME và CMF có:
BM = CM
ME = MF
\(\widehat{BME}=\widehat{CMF}\)
\(\Rightarrow\Delta BME=\Delta CMF\left(c-g-c\right)\)
\(\Rightarrow BE=CF\)
c) Dễ thấy \(\Delta BMF=\Delta CMA\left(c-g-c\right)\Rightarrow\widehat{BFM}=\widehat{CAM}\)
Chúng lại ở vị trí so le trong nên AC//BF.
d) Xét tam giác AEF có MA = ME = MF nên AEF là tam giác vuông. Vậy \(AE\perp EF\)
Lại có \(AE\perp BC\Rightarrow\) BC//EF
Hình vẽ