K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2022

Áp dụng t/c đường phân giác góc A, ta có:

\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{4}{5}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{CD}{5}=\dfrac{BD}{4}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{CD}{5}=\dfrac{BD}{4}=\dfrac{CD+BD}{5+4}=\dfrac{3}{9}=\dfrac{1}{3}\)

\(\Rightarrow CD=\dfrac{1}{3}.5=\dfrac{5}{3}cm\)

3 tháng 3 2022

Xét \(\Delta ABC\) có :

AD là phân giác của \(\widehat{A}\)

=> \(\dfrac{DB}{AB}=\dfrac{DC}{AC}=\dfrac{DB+DC}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{3}{9}=\dfrac{1}{3}\)

=>\(\dfrac{DC}{5}=\dfrac{1}{3}\Leftrightarrow DC=\dfrac{5}{3}\approx1,7\) CM

 

a:

Sửa đề tam giác DEC

Xet ΔABC vuông tại A và ΔDEC vuông tại D có

góc C chung

=>ΔABC đồng dạng với ΔDEC

b: \(BC=\sqrt{3^2+5^2}=\sqrt{34}\left(cm\right)\)

\(AD=\dfrac{2\cdot3\cdot5}{3+5}\cdot cos45=\dfrac{15\sqrt{2}}{8}\left(cm\right)\)

AD là phân giác

=>BD/AB=CD/AC

=>\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{\sqrt{34}}{8}\)

=>\(BD=\dfrac{3\sqrt{34}}{8}\left(cm\right)\)

2 tháng 5 2021

Theo mình là D

12 tháng 5 2022

a, Xét Δ ABC vuông tại A, có :

\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)

=> \(BC^2=3^2+4^2\)

=> \(BC^2=25\)

=> BC = 5 (cm)

b,

Xét Δ AHB và Δ CAB, có :

\(\widehat{AHB}=\widehat{CAB}=90^o\)

\(\widehat{ABH}=\widehat{CBA}\) (góc chung)

=> Δ AHB ∾ Δ CAB (g.g)

=> \(\dfrac{HB}{AB}=\dfrac{AH}{CA}\)

=> \(\dfrac{HB}{AH}=\dfrac{AB}{CA}\)

Xét Δ AHB và Δ CHA, có :

\(\widehat{AHB}=\widehat{CHA}=90^o\)

\(\dfrac{HB}{AH}=\dfrac{AB}{CA}\) (cmt)

=> Δ AHB ∾ Δ CHA (cmt)

 

 

12 tháng 5 2022

(Tự vẽ hình)

a) Áp dụng định lý Pytago ta có:

\(BC^2=AB^2+AC^2=3^2+4^2=25\Rightarrow BC=5\left(cm\right)\)

Do \(AD\) là phân giác nên ta có: \(\left\{{}\begin{matrix}BD+CD=BC=5\left(cm\right)\\\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{3}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BD+CD=5\\\dfrac{BD}{3}=\dfrac{CD}{4}\end{matrix}\right.\)

Áp dụng tính chất dãy tỉ số bằng nhau: 

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\Rightarrow\left\{{}\begin{matrix}BD=\dfrac{5}{7}.3=\dfrac{15}{7}\left(cm\right)\\CD=\dfrac{5}{7}.4=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)

b) Xét \(\Delta AHB\) và \(\Delta CHA\) có:

\(\widehat{AHB}=\widehat{CHA}=90^0\)

\(\widehat{ABH}=\widehat{CAH}\) (cùng phụ \(\widehat{BAH}\))

\(\Rightarrow\Delta AHB\sim\Delta CHA\) (g.g)

7 tháng 4 2017

A B C D 4cm 6cm

amXét \(\Delta ABC\)có AD là tia phân giác của \(\widehat{A}\)

Áp dụng tính chất của đường phân giác ,ta có:

\(\frac{DB}{DC}\)\(\frac{AB}{AC}\)=\(\frac{4}{6}\)=\(\frac{2}{3}\)

b,theo câu a ta có :

\(\frac{DB}{DC}\)=\(\frac{2}{3}\)\(\Leftrightarrow\frac{DB}{3}\)=\(\frac{2}{3}\)

                         \(\Leftrightarrow DB=\frac{2.3}{3}\) 

                          \(\Leftrightarrow DB=2\)

Xét ΔABC có

AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{BD}{3}=\dfrac{2.8}{4}\)

\(\Leftrightarrow BD=\dfrac{2.8\cdot3}{4}=\dfrac{8.4}{4}=2.1\left(cm\right)\)

Vậy: BD=2,1cm

BC=căn 3^2+4^2=5cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4

=>BD/3=CD/4=5/7

=>BD=15/7cm; CD=20/7cm

\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

Xet ΔABC có AD là phân giác

nên BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=5/7

=>BD=15/7cm; CD=20/7cm

19 tháng 3 2017

Xét tam giác ABC có AD là tia phân giác của góc A

theo t/c đường phân giác trong tam giác, ta có:

AB/BD=AC/DC.Áp dụng dãy tỉ số bằng nhau ta có:

AB/BD=AC/DChay4/BD=6/DC=4+6/BD+DC=4+6/BC=10/5.

Từ 4/BD=10/5 => BD=4*5/10=2(cm)

     6/DC=10/5 => DC=6*5/10=3(cm)

NV
2 tháng 1

Áp dụng định lý phân giác:

\(\dfrac{DB}{AB}=\dfrac{DC}{AC}\Rightarrow\dfrac{3}{4}=\dfrac{DC}{7}\Rightarrow DC=\dfrac{21}{4}\left(cm\right)\)

\(\Rightarrow BC=DB+DC=\dfrac{33}{4}=8,25\left(cm\right)\)