Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC
=>BD=CE
b: ΔABD=ΔACE
=>\(\widehat{ABD}=\widehat{ACE}\)
=>\(\widehat{OBE}=\widehat{OCD}\)
ΔABD=ΔACE
=>AD=AE
AE+EB=AB
AD+DC=AC
mà AE=AD và AB=AC
nên EB=DC
Xét ΔOEB vuông tại E và ΔODC vuông tại D có
EB=DC
\(\widehat{OBE}=\widehat{OCD}\)
Do đó: ΔOEB=ΔODC
c: ΔOEB=ΔODC
=>OB=OC
Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
=>\(\widehat{BAO}=\widehat{CAO}\)
=>AO là phân giác của góc BAC
d: Ta có: ΔABC cân tại A
mà AH làđường trung tuyến
nên AH là phân giác của góc BAC
mà AO là phân giác của góc BAC(cmt)
và AO,AH có điểm chung là A
nên A,O,H thẳng hàng
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE\(\perp\)BC
c: Xét ΔADK vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)
Do đó: ΔADK=ΔEDC
Suy ra: AK=EC
Ta có: BA+AK=BK
BE+EC=BC
mà BA=BE
và AK=EC
nên BK=BC
la sao eo hieu anh oi em moi lop 5 anh lop 7 saoe lam dc ha troi,voi lai bai do cau hoi giong em nhung bai em la tim ti so % cua AI va IC anh lam dc ko giai giup em voi anh.Anh ko giai dc xung dang lam gi la lop 7 ha anh,em noi co dung ko????EM NOI VAY LA DUNG CHINH XAC,DUNG CCMNR!!!!!!!!!!!!:))))))
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:
a) AM=IK
b) Tam giác AMI bằng tam giác IKC
c) AI=IC
Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR
a) BD= CE
b) tam giác OEB bằng tam giác ODC
c) AO là tia phân giác cua góc BAC
Được cập nhật 41 giây trước (20:12)
Xin lỗi mình không thể chụp ảnh.
Phần 5 thì chỉ có AE song song với CF thôi nhé. Còn BD vuông góc với CF.
1. Xét tam giác ABD và tam giác EBD có:
BAD=BED=90o (gt)
ABD= EBD( BD là tia phân giác)
BD chung ( gt)
=> 2 tam giác = nhau
=> AB=BE ( 2 cạnh tương ứng)
Xét tam giác EBF và tam giác ABC có:
B1=B2(cmt)
A=E (cmt)
BE=BA( cmt)
=> 2 tam giác = nhau
2. Trong tam giác cân, tia phân giác xuất phát từ đỉnh đồng thời là đường trung trực. => BH vuông góc với AE và H là trung điểm của AE( tính chất đường trung trực) (đpcm)
3.Ta có: AD=ED( tam giác ABD= EBD) (1)
Mặt khác, DC> ED( cạnh huyền lớn hơn cạnh góc vuông) (2)
Từ (1)và (2) => DC>AD ( đcpm)
Ý 2:
Có: BA=BE(cmt)
BF=BC( tam giác BFE= BCA)
và BC= BE+EC ; BF= AB+AF
=> AF= EC
=> Tam giác BFC cân
5. Gọi giao của BH và FC là G.
Có tam giác BFC cân( cmt)
=> BG vuông góc với FC ( trong tam giác cân, tia phân giác đồng thời là đường trung tuyến)
Mặt khác,BH vuông góc với AE
=> AE song song FC ( từ vuông gó đến song song)
Nhớ tim và cảm ơn nhé. cảm ơn bạn. Chúc bạn học tốt.
a) Ta có:
- Góc ABD là góc giữa hai phân giác của góc ABC, nên ABD = CBD.
- Góc EBD là góc giữa phân giác của góc ABC và đường thẳng DE, nên EBD = CBD.
Vậy tam giác ABD = tam giác EBD.
b) Ta có:
- Góc ABD = góc EBD (do chứng minh ở câu a).
- Góc ADB = góc EDB (do cùng là góc vuông).
- Vậy tam giác ABD = tam giác EBD (do hai góc bằng nhau và góc giữa hai cạnh bằng nhau).
- Do đó, BD vuông góc với AE.
- Ta có AE cắt BD tại I, vậy I là trung điểm của AE.
c) Ta có:
- Tia Cx vuông góc với tia BD tại H.
- Trên tia đối của tia AB, lấy điểm F sao cho AF = EC.
- Ta cần chứng minh 3 điểm C, H, F thẳng hàng và AE // FC.
- Vì AF = EC và tam giác ABD = tam giác EBD (do chứng minh ở câu a), nên tam giác AFB = tam giác EFC (do hai cạnh bằng nhau và góc giữa hai cạnh bằng nhau).
- Vậy 3 điểm C, H, F thẳng hàng và AE // FC.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED
=>BA=BE và DA=DE
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(1)
Ta có: DA=DE
=>D nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD vuông góc với AE tại trung điểm I của AE
c: Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)
nên AE//CF
Ta có: BD\(\perp\)AE
AE//CF
Do đó: BD\(\perp\)CF
mà BD\(\perp\)CH
và CH,CF có điểm chung là C
nên C,H,F thẳng hàng
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE