Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có
AH chung
\(\widehat{BAH}=\widehat{EAH}\)
Do đó: ΔAHB=ΔAHE
b:
Ta có: ΔAHB=ΔAHE
=>AB=AE
Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
=>DB=DE
=>ΔDBE cân tại D
c: Xét ΔBDK và ΔEDC có
DB=DE
\(\widehat{BDK}=\widehat{EDC}\)
DK=DC
Do đó: ΔBDK=ΔEDC
=>\(\widehat{KBD}=\widehat{CED}\)
Ta có: ΔBAD=ΔEAD
=>\(\widehat{ABD}=\widehat{AED}\)
Ta có: \(\widehat{ABD}+\widehat{KBD}\)
\(=\widehat{AED}+\widehat{CED}\)
\(=180^0\)
=>A,B,K thẳng hàng
d: Ta có: ΔDBK=ΔDEC
=>BK=EC
Xét ΔADC có \(\dfrac{AB}{BK}=\dfrac{AE}{EC}\)
nên BE//KC
a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
\(\widehat{ABE}=\widehat{DBE}\)
Do đó: ΔBAE=ΔBDE
b: ta có: ΔBAE=ΔBDE
nên BA=BD và EA=ED
=>BE là đường trung trực của AD
hay BE\(\perp\)AD
a: Xét ΔADB vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔACE
b: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
a: Xét ΔABD vuông tại B và ΔAED vuông tại E co
AD chung
góc BAD=góc EAD
=>ΔABD=ΔAED
=>AB=AE
=>ΔABE cân tại A
b: Xet ΔBDF vuông tại B và ΔEDC vuông tại E có
DB=DE
góc BDF=góc EDC
=>ΔBDF=ΔEDC
=>DF=DC
Xét ΔADF và ΔADC có
AD chung
DF=DC
AF=AC
=>ΔADF=ΔADC
a) tam giác ABC có:
AB=AC => tam giác ABC cân tại A
Lại có: AD là đường phân giác của tam giác TG ABC
=> AD cũng là đường cao của tam giác ABC
b) xét tam giác EAD và tam giác ADF ta có:
AD chung
góc EAD = FDA ( AD là đpg)
AE =AF ( AB -BE=AC-FC)
=> TG EAD =TG ADF(cdc)
=> góc EDA=góc ADC(2 góc tương ứng)
mà AD nằm giữa 2 góc
=>...
a: Ta có ΔABC cân tại A
mà AD là đường phân giác ứng với cạnh đáy BC
nên AD⊥BC
b: Ta có: AE+BE=AB
AF+FC=AC
mà BE=CF
và AB=AC
nên AE=AF
Xét ΔAED và ΔAFD có
AE=AF
Góc EAD=góc FAD
AD chung
Do đó: ΔAED = ΔAFD
Suy ra: Góc EAD = góc FDA
hay DA là tia phân giác của góc EDF