Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
Suy ra: \(\widehat{ADB}=\widehat{ADC}\)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)
nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
hay AD\(\perp\)BC
b: Ta có: AE+EB=AB
AF+FC=AC
mà EB=FC
và AB=AC
nên AE=AF
Xét ΔAED và ΔAFD có
AE=AF
\(\widehat{EAD}=\widehat{FAD}\)
AD chung
Do đó: ΔAED=ΔAFD
Suy ra: \(\widehat{EDA}=\widehat{FDA}\)
hay DA là tia phân giác của \(\widehat{EDF}\)
a) tam giác ABC có:
AB=AC => tam giác ABC cân tại A
Lại có: AD là đường phân giác của tam giác TG ABC
=> AD cũng là đường cao của tam giác ABC
b) xét tam giác EAD và tam giác ADF ta có:
AD chung
góc EAD = FDA ( AD là đpg)
AE =AF ( AB -BE=AC-FC)
=> TG EAD =TG ADF(cdc)
=> góc EDA=góc ADC(2 góc tương ứng)
mà AD nằm giữa 2 góc
=>...
a: Ta có ΔABC cân tại A
mà AD là đường phân giác ứng với cạnh đáy BC
nên AD⊥BC
b: Ta có: AE+BE=AB
AF+FC=AC
mà BE=CF
và AB=AC
nên AE=AF
Xét ΔAED và ΔAFD có
AE=AF
Góc EAD=góc FAD
AD chung
Do đó: ΔAED = ΔAFD
Suy ra: Góc EAD = góc FDA
hay DA là tia phân giác của góc EDF
Lời giải:
1. Xét tam giác $ABD$ và $ACD$ có:
$AB=AC$
$\widehat{BAD}=\widehat{CAD}$ (do $AD$ là tia phân giác $\widehat{BAC}$)
$AD$ chung
$\Rightarrow \triangle BAD=\triangle CAD$ (c.g.c)
$\Rightarrow \widehat{ADB}=\widehat{ADC}$
Mà $\widehat{ADB}+\widehat{ADC}=180^0$
$\Rightarrow \widehat{ADB}=\widehat{ADC}=180^0:2=90^0$
$\Rightarrow AD\perp BC$
2.
$AB=AC$
$BE=CF$
$\Rightarrow AB-BE=AC-CF$ hay $AE=AF$
Xét tam giác $AED$ và $AFD$ có:
$AD$ chung
$AE=AF$
$\widehat{EAD}=\widehat{FAD}$
$\Rightarrow \triangle AED=\triangle AFD$ (c.g.c)
$\Rightarrow \widehat{EDA}=\widehat{FDA}$
$\Rightarrow DA$ là tia phân giác $\widehat{EDF}$
1: Xét ΔADB và ΔADC có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔADB=ΔADC
=>\(\widehat{ADB}=\widehat{ADC}\)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)
nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
=>AD\(\perp\)BC
2: Ta có: AE+EB=AB
AF+FC=AC
mà EB=FC và AB=AC
nên AE=AF
Xét ΔEAD và ΔFAD có
AE=AF
\(\widehat{EAD}=\widehat{FAD}\)
AD chung
Do đó: ΔEAD=ΔFAD
=>\(\widehat{EDA}=\widehat{FDA}\)
=>DA là phân giác của góc EDF
a: Xét ΔADB và ΔADE có
AD chung
góc BAD=góc EAD
AB=AE
=>ΔADB=ΔADE
=>góc ABD=góc AED
b: Xét ΔAEF vuông tại A và ΔABC vuông tại A có
AE=AB
góc AEF=góc ABC
=>ΔAEF=ΔABC
=>AC=AF
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE
b: CK vuông góc AC
AB vuông góc AC
=>CK//AB
=>góc CKB=góc ABD
=>góc CKB=góc CBD
=>ΔCBK cân tại C
d: ΔABD vuông tại A
=>góc ADB<90 độ
=>góc BDC>90 độ
=>BD<BC
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E co
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA+AF=BF
BE+EC=BC
mà BA=BE; AF=EC
nên BF=BC
=>ΔBFC cân tại B
mà BD là phângíac
nên BD vuông góc CF
c: Xet ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc EDC+góc FDC=180 độ
=>E,D,F thẳng hàng