Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có tam giác ABC vuông tại B và đường phân giác AD. Khi đó, ta có:
∠BAD = ∠CAD (do AD là đường phân giác)
∠BAD = ∠EAD (do tam giác BAD = tam giác EAD)
Vậy tam giác BAD = tam giác EAD.
b) Ta cần chứng minh AD là trung trực của BE. Để chứng minh điều này, ta cần chứng minh hai góc BAD và BAE bằng nhau.
Ta có: ∠BAD = ∠EAD (do tam giác BAD = tam giác EAD)
∠BAE = ∠DAE (do AD là đường phân giác)
Vậy hai góc BAD và BAE bằng nhau.
Do đó, ta có AD là trung trực của BE.
c) Trên tia đối của BA, lấy K sao cho BK = CE. Ta cần chứng minh rằng 3 điểm E, D, K thẳng hàng.
Ta có: ∠BAD = ∠EAD (do tam giác BAD = tam giác EAD)
∠BAK = ∠CAE (do BK = CE)
Vậy hai góc BAD và BAK bằng nhau.
Do đó, ta có 3 điểm E, D, K thẳng hàng.
#THT
a) Xét 2 tam giác ABD và EBD vuông tại A và C có:
BD:cạnh chung
ABD=EBD( vì BD là tia phân giác)
\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)
\(\Rightarrow AB=BE\)(2 cạnh tương ứng)
b)\(\Rightarrow AD=DE\)
Mà DE <DC( vì cạnh góc vuông<cạnh huyền)
\(\Rightarrow AD< DC\left(dpcm\right)\)
c) Vì AD=DE và AK=KC(cmt)
\(\Rightarrow\Delta AKD=\Delta ECD\)(2 cạnh góc vuông)
\(\Rightarrow\widehat{ADK}=\widehat{EDC}\)( 2 góc tương ứng)
Mà ADE+EDC=180 độ
\(\Rightarrow KDA+ADE=180^0\)
\(\Rightarrow KDE=180^0\)
\(\Rightarrow K,D,E\)thẳng hàng
d) Gọi \(IM\perp AB;IN\perp AC\)
Xét tam giác ABC có M là trung điểm của AB và IM//AC
\(\Rightarrow I\)là trung điểm của BC ( theo tính chất đường trung bình trong tam giác)
Phần b là mà DE<DC vì cạnh góc vuông nhỏ hơn cạnh huyền nha bạn
A )Ta có tam giác ABC cân tại A
=> ˆABC=ˆACBABC^=ACB^
Và AB = AC
Xét hai tam giác vuông BCK và CBH ta có :
BC chung
ˆKBC=ˆBCHKBC^=BCH^
=>BCK = CBH (cạnh huyền - góc nhọn )
=>BH = CK (đpcm)
B) ta có BCK = CBH
=> ˆHBC=ˆKCBHBC^=KCB^
=> ˆABH=ˆACKABH^=ACK^
=> tam giác OBC cân tại O
=> BO = CO
Xét tam giác ABO và tam giác ACO
AB = AC
BO = CO (cmt)
ˆABH=ˆACKABH^=ACK^
=> ABO=ACO (c-g-c)
=> ˆBAO=ˆCAOBAO^=CAO^
=> AO là phân giác góc ABC (đpcm)
C) ta có
AI là phân giác góc ABC
Mà tam giác ABC cân tại A
=> AI vuông góc với cạnh BC (đpcm)
a: Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
\(\widehat{BAD}=\widehat{EAD}\)
Do đó: ΔABD=ΔAED
Suy ra: AB=AE và DB=DE
b: Xét ΔDBK vuông tại B và ΔDEC vuông tại E có
DB=DE
BK=EC
Do đó: ΔDBK=ΔDEC
Suy ra: DK=DC
Ta có: AB+BK=AK
AE+EC=AC
mà AB=AE
và BK=EC
nên AK=AC
Ta có: AK=AC
nên A nằm trên đường trung trực của KC(1)
Ta có: DK=DC
nên D nằm trên đường trung trực của KC(2)
Ta có: IK=IC
nên I nằm trên đường trung trực của KC(3)
Từ (1), (2) và (3) suy ra A,D,I thẳng hàng
a: Xét ΔABC và ΔADE có
AB=AD
\(\widehat{BAC}=\widehat{DAE}\)(hai góc đối đỉnh)
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAHB vuông tại H và ΔAKD vuông tại K có
AB=AD
\(\widehat{ABH}=\widehat{ADK}\)(ΔABC=ΔADE)
Do đó: ΔAHB=ΔAKD
=>BH=DK
c: Ta có: ΔAHB=ΔAKD
=>\(\widehat{HAB}=\widehat{DAK}\)
mà \(\widehat{HAB}+\widehat{HAD}=180^0\)(hai góc kề bù)
nên \(\widehat{DAK}+\widehat{DAH}=180^0\)
=>K,A,H thẳng hàng
Hình bạn tự vẽ nhé
a,Xét tam giác BAD và tam giác EDA:
AD chung
ABD=AED=90 độ( tam giác ABC vuông tại B, DE vuông góc AC)
BAD=CAD(AD là tia phân giác)
Suy ra tam giác BAD= tam giác EDA(cạnh huyền - góc nhọn)
b, Vì tam giác BAD= tam giác EDA (cmt)
Suy ra: AB=AE(2 cạnh tương ứng)
Suy ra A thuộc trung trực BE 1
Vì tam giác BAD = tam giác EDA(CMA)
Suy ra:BD=DE
Suy ra: D thuộc trung trực BE 2
Từ 1 và 2
Suy ra AD là đường trung trực BE
c,AB=AE(cmt) 3
BK=EC(gt) 4
AB+BK=AK 5
AE+EC=AC 6
Từ 3,4,5,6
Suya ra AK =AC
Suy ra tam giác AKC cân tại A 7
Mà AD là tia phân giác 8
Từ 7 và 8
Suy ra AD là đg cao tam giác AKC
Xét tam giác AKC có:
Đg cao CB( tam giác ABC vuông tại B)
Đg cao AD (cmt)
Mà AD cắt CB tại D
Suy ra D là trực tâm tam giác AKC 9
Suy ra KE là đg cao còn lại 10
Từ 9,10
Suy ra D thuộc KE
Suy ra K,D,E thg hàng