Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB và ΔADC có
AD chung
góc BAD=góc CAD
AB=AC
=>ΔABD=ΔACD
b: Xét ΔDHB và ΔDHC có
DH chung
HB=HC
DB=DC
=>ΔDHB=ΔDHC
=>góc BDH=góc CDH
=>DH là phân giác của góc BDC
c: ΔABC cân tại A
mà AH là phân giác
nên AH vuông góc CB
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH
b: ta có: ΔBAD=ΔBHD
nên DA=DH
mà DH<DC
nên DA<DC
c: Ta có: BA=BH
DA=DH
Do đó: BD là đường trung trực của AH
hay BD⊥AH
Áp dụng định lí pitago cho tam giác ADH vuông tại H và tam giác HAC vuông tại H
=> AH2 = AD2- DH2 và AH2 = AC2 - HC2
=> AD2 - DH2 = AC2 - HC2
=> AD2 + HC2 = AC2 + DH2
a) Xét tam giác ABD và tam giác AHD có:
AB = AH ( gt )
^BAD = ^CAD ( Do AD phân giác )
AD chung
=> Tam giác ABD = tam giác AHD ( c.g.c )
=> ^ABD = ^AHB ( hai góc tương ứng )
b) Xét tam giác AHE và tam giác ABC có:
AB = AH ( gt )
^ABC chung
^ABD = ^AHD ( cmt )
=> Tam giác AHE = tam giác ABC ( g.c.g )
a) Ta có: \(\widehat{ADC}=\widehat{ABD}+\widehat{BAD}=90^0+\widehat{BAD}\)
\(\Rightarrow\widehat{ADC}>90^0\). Mà \(\widehat{ADC}+\widehat{ADB}=180^0\Rightarrow\widehat{ADB}< \widehat{ADC}\)
b) \(\Delta ABD=\Delta AHD\left(c.g.c\right)\Rightarrow\widehat{ABD}=\widehat{AHD}=90^0\)(2 góc tương ứng)
\(\Rightarrow DH⊥AC\)
c) Gọi AB và CK cắt nhau tại điểm I.
Xét \(\Delta ADC\): \(CI⊥AD\) tại K và \(AI⊥CD\) tại B.
=> I là trực tâm của \(\Delta ADC\). Mà \(DH⊥AC\)=> I,D,H thẳng hàng
=> AB,DH,CK đồng quy.