Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào \(\Delta ABC\)ta có:
\(BC^2=AB^2+AC^2\)Hay \(BC=\sqrt{6^2+8^2=10}\)
Ủng hộmi nha
a) Xét \(\Delta ABC\)vuông tại A, AB = 6cm; AC = 8cm
\(\Rightarrow BC^2=AB^2+AC^2\)
\(BC^2=6^2+8^2\)
\(BC^2=36+64\)
\(BC^2=100\)
\(BC=10\)
Suy ra cạnh BC = 10cm
b) Xét \(\Delta BAC\)và \(\Delta BED\)ta có:
\(\widehat{BAC}=\widehat{DEB}=90^o\)
\(\widehat{B}\)chung
\(BD=BC\left(gt\right)\)
\(\Rightarrow\Delta BAC=\Delta BED\)
Vậy...
A) XÉT \(\Delta ABC\)VUÔNG TẠI A
\(\Rightarrow BC^2=AB^2+AC^2\left(PYTAGO\right)\)
THAY \(10^2=6^2+AC^2\)
\(100=36+AC^2\)
\(\Rightarrow AC^2=100-36\)
\(\Rightarrow AC^2=64\)
\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)
ta có \(AD+DC=AC\)
\(\Leftrightarrow3+DC=8\)
\(\Leftrightarrow DC=8-3=5\left(cm\right)\)
B) XÉT \(\Delta ABD\)VÀ \(\Delta EBD\)CÓ
\(\widehat{BAD}=\widehat{BED}=90^o\)
\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)
BD LÀ CẠNH CHUNG
=>\(\Delta ABD\)=\(\Delta EBD\)( CH-GN)
\(\Rightarrow BA=BE\)(HAI CẠNH TƯƠNG ỨNG )
=> \(\Delta BAE\)LÀ TAM GIÁC CÂN TẠI B
c) XÉT \(\Delta ADF\)VUÔNG TẠI A
\(\Rightarrow DF>AD\left(1\right)\)( CẠNH HUYỀN LỚN NHẤT )
VÌ \(\Delta ABD\)=\(\Delta EBD\)(CMT)
=> \(AD=ED\left(2\right)\)(HAI CẠNH TƯƠNG ỨNG )
TỪ (1) VÀ (2)
\(\Rightarrow DF>ED\)
-.- LM XOG LỠ PẤM HỦY T~T
A)THEO ĐỊNH LÝ PYTAGO XÉT \(\Delta ABC\)VUÔNG TẠI A
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow10^2=6^2+AC^2\)
\(\Rightarrow100=36+AC^2\)
\(\Rightarrow AC^2=64\)
\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)
b) XÉT \(\Delta ABD\)VÀ \(\Delta EBD\)CÓ
\(\widehat{BAD}=\widehat{BED}=90^o\)
\(\widehat{B_1}=\widehat{B_2}\left(GT\right)\)
\(BD\)LÀ CẠNH CHUNG
=>\(\Delta ABD\)=\(\Delta EBD\)(CH-GN)
=>\(AB=EB\)
=>\(\Delta ABE\)CÂN TẠI B
C) TRONG\(\Delta ABE\)CÓ BM LÀ PHÂN GIÁC
=> BM VỪA LÀ PHÂN GIÁC VỪA LÀ TRUNG TUYẾN
=> AM=ME
VÌ AM=ME (CMT)=> CM LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta AEC\)
MÀ \(CG=2GM\)
=> G LÀ TRỌNG TÂM CỦA \(\Delta AEC\)
CÓ EN=NC (GT) =>AN LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA \(\Delta AEC\)
MÀ G LÀ TRỌNG TÂM CỦA \(\Delta AEC\)
=> G NẰM TRÊN ĐƯỜNG TRUNG TUYẾN AN
=> BA ĐIỂM A,G,N THẲNG HÀNG
a) tam giác ABC vuông tại A => AB2 + AC2 = BC2 ( định lý py-ta-go)
hay 92 + 122 = BC2
=> BC2 = 81 + 144 = 225 => BC = √225=15cm225=15cm
trong tam giác ABC có: AB < AC < BC
=> góc C < góc B < góc A (định lý)
b) xét tam giác ABD và tam giác MBD có:
góc A = góc M = 900 (gt)
BD chung
góc B1 = góc B2 (gt)
=> tam giác ABD = tam giác MBD (ch-gn)
c) xét tam giác ADE và tam giác MCD có:
góc A = góc M = 900 (gt)
AD = DM (tam giác ABD = tam giác MBD)
góc ADE = góc MDC (đối đỉnh)
=> tam giác ADE = tam giác MDC (g.c.g)
=> AE = MC (cạnh tương ứng)
ta có: BE = BA + AE
BC = BM + MC
mà BA = BM (tam giác ở câu a)
AE = MC (cmt)
=> BE = BC
=> tam giác BEC cân tại E
hok tốt