K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: M trên cạnh AB sao cho BM=BC

a: Xét ΔAEM vuông tại E và ΔABC vuông tại B có

góc A chung

=>ΔAEM đồng dạng với ΔABC

b: \(AC=\sqrt{8^2+6^2}=10\left(cm\right)\)

BM+MA=BA

=>6+MA=8

=>MA=2cm

ΔAEM đồng dạng với ΔABC

=>AE/AB=AM/AC

=>AE/8=2/10=1/5

=>AE=1,6(cm)

AE+EC=AC

=>EC=AC-AE=10-1,6=8,4cm

a: Xét ΔABC có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

Xét ΔABD vuông tại D và ΔCAD vuông tại  D có

góc DBA=góc DAC

=>ΔABD đồng dạng với ΔCAD

b: góc EAF+góc EDF=180 độ

=>AFDE nội tiếp

=>góc AFD+góc AED=180 độ

=>góc AFD=góc CED

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc HBA chung

Do đó: ΔHBA\(\sim\)ΔABC

b: Xét ΔBAC có BD là phân giác

nên DA/DC=BA/BC(1)

Xét ΔBHA có BI là phân giác

nên IH/IA=BH/BA(2)

Ta có: ΔHBA\(\sim\)ΔABC

nên BA/BC=BH/BA(3)

Từ (1), (2) và (3) suy ra IH/IA=DA/DC

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: BC=căn 15^2+20^2=25cm

AH=15*20/25=12cm

a: BC=căn 6^2+8^2=10cm

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=1

=>AD=3cm

b: Xét ΔABD vuông tại A và ΔEBC vuông tại E có

góc ABD=góc EBC

=>ΔABD đồng dạng với ΔEBC

c: ΔABD đồng dạng với ΔEBC

=>AD/EC=AB/EB

=>AD/AB=EC/EB

=>CD/BC=EC/EB

30 tháng 3 2022

a)  Áp dụng định lý Pytagoo vào tam giác vuông ABC ta có:

    BC2=AB2+AC2BC2=AB2+AC2

⇔⇔BC2=4,52+62=56,25BC2=4,52+62=56,25

⇔⇔BC=√56,25=7,5BC=56,25=7,5 cm

     Xét  ΔABCΔABCvà     ΔDECΔDEC  CÓ:

        ˆBAC=ˆEDC=900BAC^=EDC^=900

        ˆACBACB^   CHUNG

Suy ra:   ΔABC ΔDECΔABC ΔDEC

⇒⇒BCEC=ACDCBCEC=ACDC  ⇒⇒EC=BC.DCACEC=BC.DCAC

HAY    EC=7,5×26=2,5EC=7,5×26=2,5

b)   Áp dụng định lý Pytago vào tam giác vuông DEC ta có:

      DE2=EC2−DC2DE2=EC2−DC2

⇔⇔DE2=2,52−22=2,25DE2=2,52−22=2,25

⇔⇔DE=√2,25=1,5DE=2,25=1,5

Vậy   SDEC=DE.DC2=1,5×22=1,5SDEC=DE.DC2=1,5×22=1,5CM2

30 tháng 3 2022

a)  Áp dụng định lý Pytagoo vào tam giác vuông ABC ta có:

    BC2=AB2+AC2BC2=AB2+AC2

⇔⇔BC2=4,52+62=56,25BC2=4,52+62=56,25

⇔⇔BC=√56,25=7,5BC=56,25=7,5 cm

     Xét  ΔABCΔABCvà     ΔDECΔDEC  CÓ:

        ˆBAC=ˆEDC=900BAC^=EDC^=900

        ˆACBACB^   CHUNG

Suy ra:   ΔABC ΔDECΔABC ΔDEC

⇒⇒BCEC=ACDCBCEC=ACDC  ⇒⇒EC=BC.DCACEC=BC.DCAC

HAY    EC=7,5×26=2,5EC=7,5×26=2,5

b)   Áp dụng định lý Pytago vào tam giác vuông DEC ta có:

      DE2=EC2−DC2DE2=EC2−DC2

⇔⇔DE2=2,52−22=2,25DE2=2,52−22=2,25

⇔⇔DE=√2,25=1,5DE=2,25=1,5

Vậy   SDEC=DE.DC2=1,5×22=1,5SDEC=DE.DC2=1,5×22=1,5CM2

a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)

b: Sửa đề: vuônggóc BC, cắt AC tại H

Xet ΔCDH vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDH đồng dạng với ΔCAB

c: BD/DC=AB/AC=4/3

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)

Vậy: BC=10cm; AD=3cm; CD=5cm

b) Ta có: \(\dfrac{CE}{CA}=\dfrac{4}{8}=\dfrac{1}{2}\)

\(\dfrac{CD}{CB}=\dfrac{5}{10}=\dfrac{1}{2}\)

Do đó: \(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)

Xét ΔCED và ΔCAB có 

\(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)(cmt)

\(\widehat{C}\) chung

Do đó: ΔCED\(\sim\)ΔCAB(c-g-c)

 

12 tháng 4 2022

a, Xét tam giác HBA và tam giác ABC có 

^B _ chung ; ^BHA = ^BAC = 900

Vậy tam giác HBA ~ tam giác ABC (g.g) 

Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=10cm\)

\(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}cm\)

\(\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{36}{10}=\dfrac{18}{5}cm\)

b, Xét tam giác CHI và tan giác CAH có 

^AIH = ^CHA = 900

^C _ chung 

Vậy tam giác CHI ~ tam giác CAH (g.g)

\(\dfrac{CH}{AC}=\dfrac{CI}{CH}\Rightarrow CH^2=CI.AC\)