Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAE và ΔBFE có
BA=BF
\(\widehat{ABE}=\widehat{FBE}\)
BE chung
Do đó: ΔBAE=ΔBFE
b: Ta có: ΔBAE=ΔBFE
=>\(\widehat{BAE}=\widehat{BFE}\)
mà \(\widehat{BAE}=90^0\)
nên \(\widehat{BFE}=90^0\)
=>EF\(\perp\)BC
c: Xét ΔAEM và ΔFEC có
EA=EF
\(\widehat{AEM}=\widehat{FEC}\)
EM=EC
Do đó: ΔAEM=ΔFEC
=>\(\widehat{EAM}=\widehat{EFC}\)
mà \(\widehat{EFC}=90^0\)
nên \(\widehat{EAM}=90^0\)
Ta có: \(\widehat{BAM}=\widehat{BAE}+\widehat{MAE}\)
\(=90^0+90^0=180^0\)
=>B,A,M thẳng hàng
a. Xét tam giác ABM và tam giác DBM :
BM chung
Góc ABM =góc DBM ( gt)
BD = BA (gt)
=> Tam giác ABM = tam giác DBM ( ch-gn)
b) Ta có tam giác ABM = tam giác DBM
=> Góc BAM = góc BDM ( = 90 độ)
=> MD vuông góc với BC
c) Xét tam giác vuông DMC vuông tại D ta có :
MC > MD ( vì MC là cạnh huyền )
Mà MD = MA
=> MC > MA
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥BC
c: Xét ΔDEC vuông tại E và ΔDAM vuông tại A có
DE=DA
EC=AM
Do đó: ΔDEC=ΔDAM
Suy ra: DC=DM