Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta đặt a,b,c lần lượt là các số đo của các góc A,B,C
ta có \(\frac{a}{3}=\frac{b}{2}=\frac{c}{1}=\frac{180}{6}=30\)
\(\frac{a}{3}=30\Rightarrow a=90\)
\(\frac{b}{2}=30\Rightarrow b=60\)
vậy góc A=90* là góc vuông
câu b thì ta vẽ đường cao AH sau ta c/m HÂC =60* và BAH= 30* thì ta sẽ làm được
Bạn tự vẽ hình
a/Xét tam giác ABD có AB=BD(gt)
=>Tam giác ABD cân tại B (dấu hiệu nhận biết tam giác cân)
=>góc BAD= góc BDA hay góc BAD= góc HDA(1)
Vì tam giác ABC vuông tại A nên góc BAC = 90độ
Mà góc BAC=góc BAD+ góc DAC
Nên góc BAD+góc DAC =90độ(2)
Xét tam giác AHD vuông tại H( Vì AH là đường cao)
=>góc HAD +góc HDA=90 độ (trong tam giác vuông, hai góc nhọn phụ nhau) (3)
Từ (1),(2) và (3) suy ra góc HAD= góc DAC
=>AD là tia phân giác của góc HAC
b/Ta có AH vuông góc vớiBC (vì AH là đường cao)
=>góc AHC=90 độ
=> tam giác AHD vuông tại H
Vì DK vuông góc với AC (gt)
=>góc DKA=90độ
=>tam giác AKD vuông tại K
Xét tam giác AHD vuông tại H và tam giác AKD vuông tại K có
cạnh huyền AD chung và góc HAD =góc KAD (Vì AD là phân giác của góc HAC)
=>tam giác AHD = tam giác AKD (ch.gn)
=>AH=AK( 2 cạnh tương ứng)
c/ Xét tam giác DKC vuông tại K( vì DK vuông góc với AC)
=> góc DKC là góc lớn nhất trong tam giácDKC
mà cạnh DC đối diện với góc DKC
=>DC là cạnh lớn nhất trong tam giác DKC
=>DC>KC
=>DC+BD>KC+BD( cộng cả 2 vế với BD)
=>BC>KC+BD(Vì điểm D thuộc BC)
=>BC+AK>AK+KC+BD (cộng cả 2 vế với AK)
=>BC+AK>AC+BD( VÌ K nằm giữa A và C)
=>BC+AH>AC+AB (Vì AK= AH, BD=AB)
Vậy AB+AC<BC+AH
tam giác ABC chứ không phải tan giac ABC nha......................................................các bạn
a: Ta có: \(\widehat{C}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{A}}{3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{B}=2\cdot\widehat{C}\\\widehat{A}=3\cdot\widehat{C}\end{matrix}\right.\)
Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow6\cdot\widehat{C}=180^0\)
\(\Leftrightarrow\widehat{C}=30^0\)
Suy ra: \(\widehat{A}=90^0\)
Xét ΔABC có \(\widehat{A}=90^0\)
nên ΔABC vuông tại A
b: Ta có: \(\widehat{B}+\widehat{C}=90^0\)
\(\widehat{HAC}+\widehat{C}=90^0\)
Do đó: \(\widehat{B}=\widehat{HAC}\)
Ta có: \(\widehat{B}+\widehat{C}=90^0\)
\(\widehat{BAH}+\widehat{B}=90^0\)
Do đó: \(\widehat{C}=\widehat{BAH}\)
a) Ta có: \(\widehat{HAB}+\widehat{B}=90^0\)(ΔAHB vuông tại H)
\(\widehat{C}+\widehat{B}=90^0\)(ΔABC vuông tại A)
Do đó: \(\widehat{HAB}=\widehat{HCA}\)
Xét tam giác BAH ta có:B+A+H=1800
Thay số:380+900+A=1800
BAH=520(1)
Vì BAH+HAC=900(2)
TỪ (1) và (2) suy ra:HAC=38