K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2017

1a) A=D=E=90 độ

=>AEHD là hcn 

=>AH=DE

b)Xét tam giác DBH vuông tại D có:

DI là đường trung tuyến ứng với cạnh huyền BH

=>DI=BH/2=IH

=>tam giác IDH cân tại I

=>góc IDH=góc IHD (1)

Gọi O là gđ 2 đường chéo AH và DE

=>OD=OA=OE=OH (tự c/m)

=> tam giác DOH cân tại O

=> góc ODH=góc OHD(2)

từ (1) và (2) => góc ODH+góc IDH=90 độ(EHD+DHI=90 độ)

=>IDvuông góc DE(3)

Cmtt ta được: KEvuông góc DE(4)

Từ (3)và (4) => DI//KE.

16 tháng 12 2017

2a) Ta có góc HAB+góc HAC=90 độ (1)

Xét tam giác ABC vuông tại A có 

AM là đg trung tuyến ứng vs cạnh huyền BC

=>AM=MC

=>tam giác AMC cân

=>góc MAC=góc ACM

Lại có: góc HAC+góc ACH=90 độ(2)

Từ (1) và (2) => góc BAH=góc ACM

Mà góc AMC=góc MAC(cmt)

=>ABH=MAC(3)

b)A=D=E=90 độ

=>AFHE là hcn

Gọi O là gđ EF và AM

OA=OF(tự cm đi nha)

=>tam giác OAF cân

=>OAF=OFA(4)

Ta có : OAF+MCA=90 độ(5)

Từ (3)(4) và (5)

=>MAC+OFA=90 độ

Hay AM vuông góc EF

k giùm mình nha.

29 tháng 10 2021

thank you :33

 

29 tháng 10 2021

a, Dễ thấy ADHE là hcn nên \(AH=DE\)

Mà AH là hình chiếu từ A tới BC nên \(AH\le AM\)

Do đó \(DE\le AM\)

Mà AM là tt ứng cạnh huyền BC nên \(AM=\dfrac{1}{2}BC\)

Vậy \(DE\le\dfrac{1}{2}BC\)

7 tháng 3 2023

a) Xét tam giác HAB và tam giác ABC , có :

A^ = H^ = 90o

B^ : góc chung

=> tam giác ABH ~ tam giác CBA ( g.g)

ADĐL pitago vào tam giác vuông ABC , có :

AB2 + AC2 = BC2

=> 62 + 82 = BC2

=> BC2 = 100

=> BC=10

Vì tam giác ABH ~ tam giác CBA ( cmt)

=> ��������

=> AH . BC = AB . AC

=> AH.10= 6.8

=> AH = 4,8

b)

Ta có :

A^1 + B^ = 90o

B^ + C^ = 90o

=> A^1 = C^

Xét tam giác HAC , và tam giác HAB , có :

A^1 = C^ ( cmt )

H^1 = H^2 = 90o

=> tam giác HAB ~ tam giác HCA ( g.g)

=> ��������=> AH2 = HC . HB

ΔAHB vuông tại H có HD là đường cao

nên AD*AB=AH^2

ΔABC vuôngtai A co AH vuông góc BC

nên HB*HC=AH^2=AD*AB

12 tháng 5 2023

thankssss

a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

Do đó: ΔHAC\(\sim\)ΔABC

b: Xét ΔABH vuông tại H có HD là đường cao

nên \(AH^2=AD\cdot AB\left(1\right)\)

c: Xét ΔACH vuông tại H có HE là đườg cao

nên \(AH^2=AE\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

19 tháng 4 2023

bạn ơi sao vuông tại h có đường cao lại suy ra đc ah bình =ad.ab rứa mik khoog hiểu =((

 

 

a: góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

góc MAC+góc AED=90 độ

=>góc MAC+góc AHD=90 độ

=>góc MAC+góc B=90 độ

=>góc MAC=góc MCA và góc MAB=góc MBA

=>MA=MB=MC

=>M là trung điểm của BC

b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

AH=15*20/25=12cm

HB=15^2/25=9cm

HC=20^2/25=16(cm)

AD=12^2/15=144/15=9,6cm

AE=12^2/20=7,2cm

\(S_{ADE}=\dfrac{1}{2}\cdot7.2\cdot9.6=34.56\left(cm^2\right)\)

9 tháng 4 2023

cm bn nha