K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2019

a/ Xét /\ ABC và /\ HDC có:

BAC = DHC =90' (gt)

BCA chung

=> /\ ABC đồng dạng /\ HDC (g.g)

b/ xét /\ ABC có:

BAC = 90' (gt)

=> DAE = 90' (kề bù với BAC)

xét /\ DAE và /\ DHC có

ADE = HDC (hai góc đối đỉnh)

DAE = DHC =90' (cmt)

=> /\ DAE đồng dạng /\ DHC (g.g)

=> DA * DC = DH * DE 

c/ xét /\ BEC có:

DH vuông với BC hay EH vuông với BC (gt)

CA vuông với BA hay CA vuông với BE (gt)

mà EH và CA cắt nhau tại D

=> D là trực tâm của /\ BEC (t/c)

=> BK là dường cao 

=> BK vuông với EC (t/c trực tâm)

có DK vuông với EC (gt)

=> B<D<K thẳng hàng (giải thích: vì BK cắt D mà DK vuông vs EC)

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

=>DA=DH

b: DA=DH

DH<DC

=>DA<DC

c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBK chung

=>ΔBHK=ΔBAC

=>BK=BC

=>ΔBKC cân tại B

10 tháng 2 2018

kho ua

19 tháng 3 2019

a) * Chứng minh EA.EB = ED.EC

- Chứng minh Δ EBD đồng dạng với Δ ECA (gg)

- Từ đó suy ra EB/EC = ED/EA → EA.EB = ED.EC

* Chứng minh góc EAD = góc ECB

- Chứng minh Δ EAD đồng dạng với Δ ECB (cgc)

- Suy ra góc EAD = góc ECB

b) - Từ góc BMC = 120o → góc AMB = 60o → góc ABM = 30o

- Xét Δ EDB vuông tại D có góc B = 30o

→ ED = 1/2 EB

- Lý luận cho SEAD/SECB = (ED/EB)2 từ đó SECB = 144 cm2

c) - Chứng minh BMI đồng dạng với Δ BCD (gg)

- Chứng minh CM.CA = CI.BC

- Chứng minh BM.BD + CM.CA = BC2 có giá trị không đổi

Cách 2: Có thể biến đổi BM.BD + CM.CA = AB2 + AC2 = BC2 

d) - Chứng minh Δ BHD đồng dạng với Δ DHC (gg)

→ BH/DH = BD/DC → 2BP/2DQ = BD/DC → BP/DQ = BD/DC

- Chứng minh Δ DPB đồng dạng với Δ CQD (cgc)

→ góc BDP = góc DCQ mà góc BDP + góc PDC = 900 → CQ ⊥ P

a: Xét ΔBED vuông tại E và ΔBAC vuông tại A có

góc B chung

=>ΔBED đồng dạng vơi ΔBAC

 

b: Xet ΔCAB co FD//AB

nên DB/DC=FA/FC

29 tháng 3 2023

câu b) c) nữa đâu :(