K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2021

a/ Xét t/g ABM vg tại A và t/g DBM vg tại D có

BM : chung

\(\widehat{ABM}=\widehat{CBM}\)

=> t/g ABM = t/g DBM

=> AB = BD
Mà \(\widehat{ABC}+\widehat{C}=90^O\) => \(\widehat{ABC}=60^o\)

=> t/g ABD đều

b/ t/g ABM = t/g DBM

=> AM = DM ; \(\widehat{BDM}=\widehat{BAC}=90^o\)

Suy ra t/g CMD vg tại D

=> MC > DM

=> MC > AM

c/ Xét t/g MAE vg tại A và t/g MDC vg tại D có

AM = MD
AE = DC
=> t/g MAE = t/g MDC
=> \(\widehat{AME}=\widehat{DMC}\)

Mà 2 góc này đối đỉnh

=> D,M,E thẳng hàng

a) Xét ΔABM vuông tại A và ΔDBM vuông tại D có 

BM chung

\(\widehat{ABM}=\widehat{DBM}\)(BM là tia phân giác của \(\widehat{ABD}\))

Do đó: ΔABM=ΔDBM(cạnh huyền-góc nhọn)