Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AHD và tam giác CKD có:
AHD=CKD=90
\(D_1=D_2\) (2 góc đối đỉnh)
=> tam giác AHD đồng dạng tam giác CKD (g-g)
=> đpcm
b) Xét tam giác AHB và tam giác CKB có
AHB=BKC=90
ABD=DBC ( BD là tia phân giác ABC)
=> Tam giác AHB đồng dạng CKB (g-g)
=> \(\dfrac{AB}{HB}=\dfrac{BC}{KB}=>AB.KB=BC.HB\)
a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AD là phân giác
=>BD/CD=AB/AC=3/4
=>4DB=3CD
mà DB+DC=15
nên DB=45/7cm; DC=60/7cm
b: Xet ΔABC vuông tại A và ΔEDC vuông tại E có
góc C chung
=>ΔABC đồng dạng với ΔEDC
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc hBE
=>ΔABE=ΔHBE
c: Xét ΔBHM vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBM chung
=>ΔBHM=ΔBAC
=>BM=BC
=>ΔBMC cân tại B
mà BN là đường phân giác
nên N là trung điểm của CM
=>NM=NC
a ) Áp dụng Pytago vào tam giác vuông ABC ta được :
AB2+AC2 = BC2
=> 242 +322 = BC2
=> BC2 =1600
=> BC=40 (cm)
b, ta có: ΔABC vuông có ABCˆ=60o
ACBˆ=30o;DBCˆ=30o(BD là phân giác)
Xét ΔDBC có ACBˆ=DBCˆ=30o
ΔDBC cân tại D
c, XétΔKBC có CA _|_KB; KM_|_BC
Mà CA cắt KM tại D D là trực tâm của ΔKBC
BD_|_KC
d, ta có: M là trung điểm của BC (ΔDBC cân)
E là trung điểm của AC
MC=12BC=20;EC=12AC=16
EM=\(\sqrt[]{MC^2-EC^2}\)=12
( L-IKE)