K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

a) Xét tam giác AMC và tam giác DMB có:

AM=MD(gt)

\(\widehat{BMD}=\widehat{AMC}\left(đối.đỉnh\right)\)

BM=MC(M là trung điểm BC)

=> ΔAMC=ΔDMB(c.g.c)

b) Ta có: \(\widehat{DBM}=\widehat{MCA}\left(\Delta AMC=\Delta DMB\right)\)

Mà 2 góc này so le trong

=> BD//AC

Xét tứ giác ABDC có:

M là trung điểm chung của AD,BC

=> ABDC là hình bình hành

Mà \(\widehat{BAC}=90^0\)

=> ABDC là hình chữ nhật

=> AD=BC

c) Xét tam giác AMK và tam giác CMK có:

MK chung

AK=KC

\(AM=MC\left(=\dfrac{1}{2}AD=\dfrac{1}{2}BC\right)\)

=> ΔAMK=ΔCMK(c.c.c)

=> \(\widehat{MKA}=\widehat{MKC}=180^0:2=90^0\Rightarrow MK\perp AC\)

Mà AC//BD(ABDC là hình chữ nhật)

\(\Rightarrow MK\perp BD\)

 

15 tháng 12 2021

 

a) Xét tam giác AMC và tam giác DMB có:

AM=MD(gt)

ˆBMD=ˆAMC(đối.đỉnh)BMD^=AMC^(đối.đỉnh)

BM=MC(M là trung điểm BC)

=> ΔAMC=ΔDMB(c.g.c)

b) Ta có: ˆDBM=ˆMCA(ΔAMC=ΔDMB)DBM^=MCA^(ΔAMC=ΔDMB)

Mà 2 góc này so le trong

=> BD//AC

Xét tứ giác ABDC có:

M là trung điểm chung của AD,BC

=> ABDC là hình bình hành

Mà ˆBAC=900BAC^=900

=> ABDC là hình chữ nhật

=> AD=BC

c) Xét tam giác AMK và tam giác CMK có:

MK chung

AK=KC

AM=MC(=12AD=12BC)AM=MC(=12AD=12BC)

=> ΔAMK=ΔCMK(c.c.c)

=> ˆMKA=ˆMKC=1800:2=900⇒MK⊥ACMKA^=MKC^=1800:2=900⇒MK⊥AC

Mà AC//BD(ABDC là hình chữ nhật)

⇒MK⊥BD

BÀI TẬP VỀ TRƯỜNG HỢP CẠNH GÓC CẠNHBài 1: Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm E sao cho IE = IB. Chứng minh rằng : a) AE = BC; b)AB // ECBài 2: Cho góc xOy.Trên cạnh Ox lấy các điểm A và B, trên cạnh Oy lấy các điểm C và D sao cho OA = OC, OB = OD. Chứng minh rằng: AD = BCBài 3: Tên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB.Tia phân...
Đọc tiếp

BÀI TẬP VỀ TRƯỜNG HỢP CẠNH GÓC CẠNH

Bài 1: Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm E sao cho IE = IB. Chứng minh rằng :

a) AE = BC; b)AB // EC

Bài 2: Cho góc xOy.Trên cạnh Ox lấy các điểm A và B, trên cạnh Oy lấy các điểm C và D sao cho OA = OC, OB = OD. Chứng minh rằng: AD = BC

Bài 3: Tên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB.Tia phân giác của góc xOy cắt AB ở C. Chứng minh rằng

a) C là trung điểm của AB

b) AB vuông góc với OC

Bài 4: Cho tam giác ABC có AB = AC, M là trung điểm của cạnh BC. Trên tia đối của tia BC và CB lấy tương ứng hai điểm D và E sao cho BD = CE. Chứng minh rằng AM là tia phân giác của góc BAC và DAE

Bài 5: Cho tam giác ABC có góc A = 1000, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm K sao cho MK = MA

a) Tính số đo góc ABK

b) về phía ngoài tam giác ABC, vẽ các đoạn thẳng AD vuông góc và bằng AB, AE vuông góc và bằng AC. Chứng minh rằng: tam giác ABK bằng tam giác DAK

c) Chứng minh MA vuông góc với DE

Bài 6: Cho tam giác ABC, D là trung điểm của cạnh AB, E là trung điểm của cạnh AC. Chứng minh rằng DE//BC và DE = 1/2 BC

Bài 7: Cho tam giác ABC vuông tại A, M là trung điểm của BC. Chứng minh rằng AM =1/2BC

Bài 8: Cho tam giác ABC vuông tại A và AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC

a) Chứng minh rằng DE vuông góc với BC

b) Cho biết 4B = 5C trung điểm của BC. Chứng minh rằng :

a) FH = 2DE.

b) FH vuông góc với DE.

3
15 tháng 12 2016

nhìu quá bn à TTvTT

23 tháng 12 2016

từ từ thui

1. Cho hai đoạn thẳng AB và CD cắt nhau tại trung điểm I của 1 đoạn thẳng đó. Chứng minh rằng: a) \(\Delta\)AIC = \(\Delta\)BID và \(\Delta\)AID = \(\Delta\)BIC ; b) AC // BD và AD // BC ; c) \(\Delta\)ABC = \(\Delta\)BDA và \(\Delta\)CAD = \(\Delta\)DBA. 2. Cho hai đoạn thẳng AB và CD song song và bằng nhau. Gọi I là giao điểm của AC và BD. Chứng minh rằng: a) I là trung điểm của mỗi đoạn thẳng AC và BD ; b) AD // BC. 3. Qua...
Đọc tiếp

1. Cho hai đoạn thẳng AB và CD cắt nhau tại trung điểm I của 1 đoạn thẳng đó. Chứng minh rằng:
a) \(\Delta\)AIC = \(\Delta\)BID và \(\Delta\)AID = \(\Delta\)BIC ;
b) AC // BD và AD // BC ;
c) \(\Delta\)ABC = \(\Delta\)BDA và \(\Delta\)CAD = \(\Delta\)DBA.
2. Cho hai đoạn thẳng AB và CD song song và bằng nhau. Gọi I là giao điểm của AC và BD. Chứng minh rằng:
a) I là trung điểm của mỗi đoạn thẳng AC và BD ;
b) AD // BC.
3. Qua trung điểm I của đoạn thẳng BC, kẻ đường vuông góc với BC. Trên đường thẳng đó lấy điểm A.
a) Chứng minh AI là tia phân giác của góc \(\widehat{BAC}\);
b) Trên tia đối của tia IA lấy điểm D sao cho ID = IA. Chứng minh rằng: AB = AC = CD = DB.
4. Cho \(\Delta\)ABC vuông tại A. Phân giác góc B cắt AC tại D. Lấy điểm E trên đoạn thẳng BC sao cho BE = BA. Gọi I là giao điểm của BD và AE.
a) Chứng minh \(\Delta\)BAD = \(\Delta\)BED.
b) So sánh AD và ED, tính \(\widehat{BED}\).
c) Chứng minh AI = EI và AE \(\perp\)BD.
5. Cho tam giác ABC, hai đường phân giác AD, BE. Chứng minh:
a) Nếu \(\widehat{ADC}\)= \(\widehat{BEC}\)thì \(\widehat{A}\) = \(\widehat{B}\) ;
b) Nếu \(\widehat{ADB}\) = \(\widehat{BEC}\) thì \(\widehat{A}\) + \(\widehat{B}\)= \(120^0\)
6. Cho tam giác ABC ( \(\widehat{A}\) \(\ne\) \(90^0\)). Trên nửa mặt phẳng bờ AB không chứa điểm C , vẽ tia Ax \(\perp\) AB, trên đó lấy điểm E sao cho AE = AB , trên nửa mặt phẳng bờ AC không chứa điểm B, vẽ tia Ay \(\perp\) AC , trên đó lấy điểm D sao cho AD = AC.
a) Chứng minh rằng BD = CE và BD \(\perp\) CE ;
b) Hai đường thẳng AB và DE có vuông góc với nhau không? Vì sao?
7. Cho tam giác ABC có \(\widehat{A}\) = \(80^0\), \(\widehat{B}\) = \(60^0\). Trên đường thẳng BC lấy các điểm BC lấy các điểm B' và C' sao cho BB' = AB và CC' = AC. Tính số đo các góc của tam giác AB'C' .

1

Bài 4: 

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

b: Ta có: ΔBAD=ΔBED

nên DA=DE và \(\widehat{BAD}=\widehat{BED}=90^0\)

c: Ta có: ΔBAE cân tại B

mà BI là đường phân giác

nên I là trung điểm của AE

hay IA=IE

Ta có: BA=BE

DA=DE

Do đó: BD là đường trung trực của AE

=>BD vuông góc với AE

30 tháng 11 2016

Xét tam giác AMC và tam giác DMB có:

AM = DM (gt)

AMC = DMB (2 góc đối đỉnh)

MC = MB (M là trung điểm của BC)

=> Tam giác AMC và tam giác DMB (c.g.c)

=> AC = DB (2 cạnh tương ứng) mà AC = AF (gt) => DB = AF

CAM = BDM (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => CA // BD

EAF + FAC + CAB + BAE = 3600

EAF + 900 + CAB + 900 = 3600

EAF + CAB + 1800 = 3600

EAF + CAB = 3600 - 1800

EAF + CAB = 1800

mà DBA + CAB = 1800 (2 góc trong cùng phía, AC // BD)

=> EAF = DBA

Xét tam giác EAF và tam giác ABD có:

EA = AB (gt)

EAF = ABD (chứng minh trên)

AF = BD (chứng minh trên)

=> Tam giác EAF = Tam giác ABD (c.g.c)

=> EF = BD (2 cạnh tương ứng)

22 tháng 12 2016

Hình học lớp 7

a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)

nên ΔABC cân tại A

hay AB=AC
b: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đo: ΔABD=ΔACE

c: Ta có: ΔABD=ΔACE

nên AD=AE

Xét ΔABE và ΔACD có 

AB=AC

\(\widehat{ABE}=\widehat{ACD}\)

AE=AD

Do đó: ΔABE=ΔACD

12 tháng 5 2016

a. Xét tg ABH vag tg CAI

Ta có: góc BAH = góc ACI=90 độ - góc IAC

                     AB=AC

           góc AHB= góc CIA=90 độ

Nên tg ABH = tg CAI (cạnh huyền-cạnh góc vuông)
=> BH=AI
b. Ta có:BH=AI (chứng minh câu a)

AD+BH=IC+AI=AB=AC

=>\(BH^2+CI^2\) có giá trị không đổi

c. Ta có: CI vuông góc với AD =>CI là đường cao của tg ACD

             AM vuông góc với DC =>AM là đường cao của tg ACD

Mà 2 đường cao CI và AM cắt nhau tại N

=>DN là đường cao thứ 3 của tg ACD

Vậy DN vuông góc với AC

d. AM vuông góc với BM

AI vuông góc với BH

=>góc MBH=góc MAI

Xét tg BHM và tg AIM

Ta có:       BH=AI (chứng minh câu a)

      Góc MBH=góc MAI(cmt)

                 BM=AM

Nên tg BHM=tg AIM(g.c.g)

=>HM=IM(1)

Góc BMH=góc AMI(2)

Từ (1) và (2) ta có:

        Tg IMH vuông cân tại M

Vậy IM là tia phân giác của góc HIC

   

 

31 tháng 1 2017

pạn vẽ hình dùm mk vs

hình chiếu là hình j zậy

22 tháng 12 2016

câu a hơi kì nhỉ , theo mk thì phải là tam giác ABM = tam giác DCM chứ

22 tháng 12 2016

a) Xét \(\Delta ABM\)\(\Delta DCM\)có :

AM=DM ( gt )

BM=MC ( gt )

\(\widehat{BMA}=\widehat{DMC}\) ( 2 góc đối đỉnh )

do đó \(\Delta ABM\) = \(\Delta DCM\) ( c.g.c )

b) Vì \(\Delta ABM=\Delta DCM\)( c/m trên )

\(\Rightarrow\widehat{ABM}=\widehat{DCM}\) ( 2 góc tương ứng )

mà 2 góc này ở vị trí so le trong

nên AB // BC