Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
nên BA=BE và DA=DE
Ta có: BA=BE
nên B nằm trên đường trung trực của AE\(\left(1\right)\)
Ta có: DA=DE
nên D nằm trên đường trung trực của AE\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AE
c: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
AF=EC
Do đó: ΔADF=ΔEDC
Suy ra: DF=DC
hay ΔDFC cân tại D
C2
Xét tam giác ADF và tam giác EDC có :
DA = DE ( Cmt )
DEF = DEC
AF = EC ( Cmt )
=) ........ ( c.g.c )
=) ADF = EDC ( ...)
mà : EDC + EDA = 180 ĐỘ
=) EDA + ADF = 180 độ
=) E D F thẳng hàng
k cko mk ddi
Cách 1: Giải theo phương pháp bậc tiểu học (của bạn Ác Quỷ)
Ta có
Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)
dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)
Vậy , suy ra AE/AD = 1/3
Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)
DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB
DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)
=> AE/AD = 1/3
Câu d nè bn.
d, ✳️ Xét ∆ ABC vuông tại A có góc ACB= 30° (gt)
➡️Góc ABC = 60°
mà ∆ BFC cân tại B (BI là đg phân giác đồng thời là đg cao)
➡️∆ BFC đều
➡️BC = FC = FB
✳️ Xét ∆ ABC vuông tại A có góc ACB = 30° (gt)
➡️AB = 1/2 BC (t/c)
➡️BC = 2 AB
Theo Pitago ta có:
BC 2 = AB 2 + AC 2
➡️(2 AB) 2 = AB 2 + AC 2
➡️4 AB 2 - AB 2 = AC 2
➡️3 AB 2 = AC 2
➡️3 AB 2 = 25
➡️AB 2 = 25 ÷ 3 = 25/3
Vậy ta có: BC 2 = 25/3 + 25 = 100/3
➡️BC = √100/3
mà BC = FC (cmt)
➡️FC = √100/3
Vậy đó, hok tốt nhé