Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
b: \(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
=>AC=20(cm)
a:
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
góc OAC+góc AED=90 độ
=>góc OAC+góc AHD=90 độ
=>góc OAC+góc ABC=90 độ
=>góc OAC=góc OCA
=>OA=OC và góc OBA=góc OAB
=>OA=OB=OC
=>O là trung điểm của BC
b: góc KAB+góc OAB=90 độ
gócHAB+góc OBA=90 độ
mà góc OAB=góc OBA
nên góc KAB=góc HAB
=>AB là phân giác của góc HAK
c: ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
a: Xét ΔAFE vuông tại A và ΔDFC vuông tại D có
góc AFE=góc DFC
=>ΔAFE đồng dạng với ΔDCF
b: Xét ΔAEF vuông tại A và ΔACB vuông tại A có
góc AEF=góc ACB
=>ΔAEF đồng dạng với ΔACB
=>EF/CB=AE/AC
=>EF*AC=AE*CB