K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAFE vuông tại A và ΔDFC vuông tại D có

góc AFE=góc DFC

=>ΔAFE đồng dạng với ΔDCF

b: Xét ΔAEF vuông tại A và ΔACB vuông tại A có

góc AEF=góc ACB

=>ΔAEF đồng dạng với ΔACB

=>EF/CB=AE/AC
=>EF*AC=AE*CB

6 tháng 5 2022

a. Xét \(2\Delta:\Delta AEF\) và \(\Delta DCF\) có:

\(\left\{{}\begin{matrix}\widehat{EAF}=\widehat{FDC}=90^o\left(gt\right)\\\widehat{EFA}=\widehat{CFD}\left(đối.đỉnh\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AEF\sim\Delta DCF\left(g-g\right)\)

b. Xét \(2\Delta:\Delta AEF\) và \(\Delta ABC\) có:

\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{AEF}=90^o\left(gt\right)\\\widehat{AEF}=\widehat{ACB}\left(2.góc.tương.ứng\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AEF\sim\Delta ABC\left(g-g\right)\)

\(\Rightarrow\dfrac{AE}{EF}=\dfrac{AC}{BC}\Leftrightarrow AE.BC=EF.AC\)

a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)

b: Sửa đề: vuônggóc BC, cắt AC tại H

Xet ΔCDH vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDH đồng dạng với ΔCAB

c: BD/DC=AB/AC=4/3

4 tháng 4 2021

a)xét tg ABC và tg MDC có: BAC=DMC=90, ^C chung 

=>tg ABC đ.dạng vs tg MDC(g.g)

b)xét tg ABC và tg MBI có: CAB=BMI=90, ^B chung

=>tg ABC đ.dạng vs tg MBI(g.g)  =>AB/MB=BC/BI=>AB.BI=BM.BC(đpcm)

4 tháng 4 2021

a) Xét \(\Delta ABC\)và \(\Delta MDC\)

 Ta có: \(\widehat{BAC}=\widehat{DMC}=90^o\)

\(\widehat{C}\)là góc chung

\(\Rightarrow\Delta ABC~\Delta MDC\left(g-g\right)\)

b) Xét \(\Delta BIM\)và \(\Delta BCA\)

Ta có: \(\widehat{IMB}=\widehat{CAB}=90^o\)

\(\widehat{B}\) là góc chung

\(\Rightarrow\Delta BIM~\Delta BCA\left(g-g\right)\)

\(\Rightarrow\frac{BI}{BC}=\frac{BM}{BA}\)

\(\Rightarrow BI\text{.}BA=BM.BC\)

C H I B D A

10 tháng 2 2018

kho ua

28 tháng 3 2022

Đáp án:

a) △ABC∽△HAC△ABC∽△HAC

b) EC.AC=DC.BCEC.AC=DC.BC

c) △BEC∽△ADC△BEC∽△ADC△ABE△ABE vuông cân tại A

Giải thích các bước giải:

a)

Xét △ABC△ABC và △HAC△HAC:

ˆBAC=ˆAHC(=90o)BAC^=AHC^(=90o)

ˆCC^: chung

→△ABC∽△HAC→△ABC∽△HAC (g.g)

b)

Xét △DEC△DEC và △ABC△ABC:

ˆEDC=ˆBAC(=90o)EDC^=BAC^(=90o)

ˆCC^: chung

→△DEC∽△ABC→△DEC∽△ABC (g.g)

→DCEC=ACBC→EC.AC=DC.BC→DCEC=ACBC→EC.AC=DC.BC

c)

Xét △BEC△BEC và △ADC△ADC:

DCEC=ACBCDCEC=ACBC (cmt)

ˆCC^: chung

→△BEC∽△ADC→△BEC∽△ADC (c.g.c)

Ta có: AH⊥BC,ED⊥BCAH⊥BC,ED⊥BC (gt)

→AH//ED→AH//ED

△AHC△AHC có AH//EDAH//ED (cmt)

→AEAC=HDHC→AEAC=HDHC (định lý Talet)

Mà HD=HAHD=HA (gt)

→AEAC=HAHC→AEAC=HAHC

Lại có: △ABC∽△HAC△ABC∽△HAC (cmt)

→ABAC=HAHC→ABAC=HAHC

→AEAC=ABAC→AE=AB→AEAC=ABAC→AE=AB

→△ABE→△ABE cân tại A

Có: AB⊥AE(AB⊥AC)AB⊥AE(AB⊥AC)

→△ABE→△ABE vuông cân tại A

image 

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

Do đó: ΔABC\(\sim\)ΔHAC

b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc C chung

DO đó: ΔCDE\(\sim\)ΔCAB

Suy ra: CD/CA=CE/CB

hay \(CD\cdot CB=CA\cdot CE\)