Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông
M thuộc AC trong tam giác ABC vuông
BC là cạnh huyền
mà trong tam giác vuông cạnh huyền là cạnh dài nhất
=)BC>BM
nếu theo bn là chứng minh BM lớn hơn hoặc bằng BC thì sai đề
nếu bằng thì điểm M sẽ nằm trùng vs điểm B
=))) đề bài sai
Cho tam giác ABC vuông
M thuộc AC trong tam giác ABC vuông
BC là cạnh huyền
mà trong tam giác vuông cạnh huyền là cạnh dài nhất
=)BC>BM
nếu theo bn là chứng minh BM lớn hơn hoặc bằng BC thì sai đề
nếu bằng thì điểm M sẽ nằm trùng vs điểm B
=))) đề bài sai
a. Xét \(\Delta ABH\) và \(\Delta MBH\) có:
BA=BM do gt
\(\widehat{BAH}=\widehat{BMH}=90^0\)
BH là cạnh huyền chung
Do đó: \(\Delta ABH=\Delta MBH\) theo trường hợp ch-cgv
Ta có:
BM=BA
=> Tam giác ABM cân tại B
=> \(\widehat{BAM}=\widehat{BMA}\)
mà \(\widehat{BAM}+\widehat{MAC}=90^o\)
=> \(\widehat{BMA}+\widehat{MAC}=90^o\)
mặt khác \(\widehat{HMA}+\widehat{HAM}=90^o\)
=> \(\widehat{HAM}=\widehat{MAC}\)(1)
Ta có: AH=AN (2)
AM chung (3)
=>Tam giác AHM=ANM
=> \(\widehat{ANM}=\widehat{AHM}=90^o\)
=> AC vuông MN
b) => Tam giác MNC vuông tại N có cạnh huyền MC
=> MC>NC
=> AN+BC=BM+MC+AN=AB+MC+AN>AB+NC+AN=AB+BC
=> dpcm
Cho tam giác ABC có vuông tại A AH vuông góc BC cmr AH+BC>AB +AC
a) Xét tam giác MBD vuông tại D và tam giác NCE vuông tại E có:
BM=CN(gt)
\(\widehat{B}=\widehat{C}\)(tam giác ABC cân)
Suy ra \(\Delta MBD=\Delta NCE\)(cạnh huyền-góc nhọn)
=>EC=BD(2 cạnh tương ứng)
b) Xét tam giác ADB và tam giác ACE có:
\(\widehat{B}=\widehat{C}\)(tam giác ABC cân)
AB=AC(tam giác ABC cân)
EC=BD(cmt)
Suy ra \(\Delta ADB=\Delta ACE\)(c.g.c)
=>AD=AE(2 cạnh tương ứng)
a, xét tam giác BDM và tam giác CEN có :
góc BDM = góc CEN = 90
BM = NC (Gt)
góc ABC = góc ACB do tam giác ABC cân tại A (Gt)
=> tam giác BDM = tam giác CEN (ch-gn)
b, tam giác BDM = tam giác CEN (câu a)
=> góc BMD = góc CNE (đn)
góc BMD + góc DMA = 180 (kb)
góc CNE + góc ENA = 180 (kb)
=> góc DMA = góc ENA (1)
có AB = AC do tam giác ABC cân tại A (gt)
BM = CN (gt)
BM + MA = AB
CN + NA = AC
=> MA = NA (2)
xét tam giác DMA và tam giác ENA có MD = EN do tam giác BDM = tam giác CEN (câu a)
(1)(2)
=> tam giác DMA = tam giác ENA (c-g-c)
=> AD = AE (đn)
xét tam giac abd=tgnbc;
ba=bn[gt]
goc abd=cbd[ bd phan giac]
bp canh chung
suy ra 2 tam giac = nhau[c.g.c]
Câu hỏi của nguyen phuong mai - Toán lớp 7 - Học toán với OnlineMath'
Bạn tham khảo link trên nhé!
Ta có:
AB=AD
=> tam giác BDA cân tại B
=> \(\widehat{BAD}=\widehat{BDA}\)(1)
Ta lại có: \(\widehat{BDA}+\widehat{HAD}=90^o,\widehat{BAD}+\widehat{DAE}=90^o\)(2)
Từ (1) và (2) ta suy ra: \(\widehat{HAD}=\widehat{DAE}\)
Xét tam giác HAD và tam giác EAD có:
\(\widehat{HAD}=\widehat{DAE}\)( chứng minh trên)
AH=AE (gt)
AD chung
Suy ra tam giác HAD và tam giác EAD
=> \(\widehat{AHD}=\widehat{ADE}\)
như vậy DE vuông AC
b) Ta có: BD+AH =BA+AE < BA+AC vì (AH=AE, BD=AB, E<AC)
Em xem lại đề bài nhé
TH1: nếu điểm M ko trùng với điểm C
khi đó điểm M nằm giữa A và C suy ra AM<AC
suy ra BM<BM(1)
TH2: nếu điểm M trùng với điểm C
khi đó BC=AM(2)
TH3: nếu điểm M trùng với điểm A
thì BM=BA mà BA là đường vuông goc kẻ từ B đn Ac
BC là đường chéo kẻ từ B xuống AC
từ 2 điều trên, suy ra BM<BC(3)
từ (1)(2)(3) suy ra: \(BM\le BC\)