K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2021

= 12  nha bạn

chúc học tốt

Bằng 12 nhé bạn hiền

2 tháng 4 2016

1) hk vẽ hình đc nha

kẻ CN//AB (N thuộc AD), gọi I là giao điểm của AD và MB

tg BIA đồng dạng với tg BAM; tg BIA động dạng với tg ACN -> tg BAM đồng dạng với tg ACN                             BA/AC=AM/CN=1 -> CN/AC=AM/AB=1/2 hay CN/AB=AM/AC=1/2 (do AB=Ac)                                          Ta có CN//AB -> CD/BD=CN/AB=1/2         

k đúng cho mình nha

2 tháng 4 2016

2)tg ABM đồng dạng với tg GEB ->GE/AM=BE/BM (1)                                                                                      tg AMC đồng dạng với tg FEC ->FE/AM=CE/CM=CE/BM (2)                                                                            (1)(2) -> GE/AM+FE/AM=(BE+CE)/BM=2                                                                                                        1/AM(GE+FE)=2 -> GE+FE=2AM

 nhớ k nhan

18 tháng 10 2023

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

=>AM=DE
b: Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔABC có 

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình

=>DE//BC và DE=1/2BC

=>DE//MC và DE=MC

Xét tứ giác DMCE có

DE//MC

DE=MC

Do đó: DMCE là hình bình hành

c: ΔHAC vuông tại H có HE là trung tuyến

nên \(HE=\dfrac{1}{2}AC\)

mà \(MD=\dfrac{1}{2}AC\)

nên HE=MD

Xét tứ giác DHME có

ED//MH

nên DHME là hình thang

mà HE=MD

nên DHME là hình thang cân

ΔHAB vuông tại H

mà HD là trung tuyến

nên HD=AD

EA=EH

DA=DH

Do đó: ED là đường trung trực của AH

6 tháng 1 2018

a) Học sinh tự làm

b) Chứng minh A N 1 2 N C ⇒ S A M E = S A E N ⇒ E M = E N  

hay E là trung điểm MN.

c) Chứng minh được EG//HF và HE/FG nên EHFG là hình bình  hành; Mặt khác BM ^ NC (do AB ^ AC)

Suy ra EHFG là hình chữ nhật

23 tháng 8 2021

a/ Ta có: M là trung điểm của AB, N là trung điểm của BC

⇒ MN là đường trung bình của △ABC ⇒ MN // AC (1)

- AB hay AM ⊥ AC (2)

Từ (1) và (2) 

Vậy: Tứ giác AMNC là hình thang vuông (đpcm)

===========

b/ Áp dụng định lí Pytago vào △ABC được: \(AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-5^2}=12\left(cm\right)\)

Do MN là đường trung bình của △ABC \(\Rightarrow MN=\dfrac{12}{2}=6\left(cm\right)\)

- E là trung điểm AM, F là trung điểm CN ⇒ EF là đường trung bình của hình thang AMNC ⇒ \(EF=\dfrac{MN+AC}{2}=\dfrac{6+12}{2}=9\left(cm\right)\)

Vậy: EF = 9 cm