Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABM vuông tại A và ΔNBM vuông tại N có
BM chung
\(\widehat{ABM}=\widehat{NBM}\)(BM là tia phân giác của \(\widehat{ABN}\))
Do đó: ΔABM=ΔNBM(cạnh huyền-góc nhọn)
b) Ta có: ΔABM=ΔNBM(cmt)
nên BA=BN(hai cạnh tương ứng) và MA=MN(Hai cạnh tương ứng)
Ta có: BA=BN(cmt)
nên B nằm trên đường trung trực của AN(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MA=MN(cmt)
nên M nằm trên đường trung trực của AN(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BM là đường trung trực của AN(Đpcm)
Bạn kham khảo link này nhé.
Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath
đề bài bn cho sai đấy nhé,chỗ "gọi E là giao điểm của ME và AB" ấy, ở đó đáng lẽ pk là F là giao điểm đúng ko? mk đã sửa lại rồi đấy.
a) ta có tam giác ABM=tam giác EBM(CH-GN)
=> AB=EB
gọi H là giao điểm của AE và MB
xét tam giác HBA và tam giác HBE có:
HB cạnh chung
\(\widehat{HBA}\)=\(\widehat{HBE}\)(gt)
AB=EB(cmt)
=> tam giác HBA=tam giác HBE(c.g.c)
=> HA=HE => H là trung điểm của AE(1)
\(\widehat{AHB}\)=\(\widehat{EHB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AHB}\)=\(\widehat{EHB}\)=90 độ
=> BH\(\perp\)AE(1)
từ (1) và (2) suy ra BM là trung trực của AE
b) xet 2 tam giác vuông AMF và EMC có:
AM=ME(vì t.giác ABM=t.giác EBM)
\(\widehat{AMF}\)=\(\widehat{EMC}\)(vì đối đỉnh)
=> tam giác AMF=tam giác EMC(cạnh góc vuông-góc nhọn kề)
=> MC=MF(2 cạnh tương ứng)
a. Hình vẽ (0.5 điểm)
Xét ΔABM và ΔKBM có:
∠(ABM) = ∠(KBM)
BM là cạnh chung
⇒ ΔABM = ΔKBM(cạnh huyên – góc nhọn) (1 điểm)
⇒ AM = MK và BA = BK (hai cạnh tương ứng) ⇒ M, B nằm trên đường trung trực của AK (0.5 điểm)
Suy ra BM là đường trung trực của AK
a) Xét ΔAMB vuông tại A và ΔHMB vuông tại H có
BM chung
\(\widehat{ABM}=\widehat{HBM}\)(BM là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔAMB=ΔHMB(Cạnh huyền-góc nhọn)
Suy ra: AM=HM(Hai cạnh tương ứng)
a: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
góc HAM=góc KAM
=>ΔAHM=ΔAKM
=>AK=AH
góc BAM+góc CAM=90 độ
góc BMA+góc MAH=90 độ
mà góc CAM=góc HAM
nên góc BAM=góc BMA
=>ΔBAM cân tại B
b: Xét ΔAIC có
CH,IK là đường cao
CH cắt IK tại M
=>M là trực tâm
=>AM vuông góc CI
Xét ΔACI có
AM vừa là đường cao, vừa là phân giác
=>ΔACI cân tại A
Xét ΔAIC có AH/AI=AK/AC
nên KH//IC
Sửa đề: Đường trung tuyến AM
a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
góc B=góc C
=>ΔBEM=ΔCFM
b: ΔBEM=ΔCFM
=>BE=CF và ME=MF
AE+EB=AB
AF+FC=AC
mà EB=FC và AB=AC
nên AE=AF
mà ME=MF
nên AM là trung trực của EF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
c. Do tam giác MKC vuông tại K nên MK < MC (0.5 điểm)
Mà MA = MK ⇒ MA < MC (0.5 điểm)
b. Xét ΔAMF và ΔKMC có:
AM = MK
∠(AMN) = ∠(KMC) (hai góc đối đỉnh)
⇒ ΔAMF = ΔKMC ( cạnh góc vuông – góc nhọn kề) (0.5 điểm)
⇒ MN = MC (hai cạnh tương ứng) (0.5 điểm)
Làm
a) Xét hai tam giác vuông ABM và tam giác vuông KBM có :
BM là cạnh chung
góc ABM = góc KBM ( gt )
Do đó : Tam giác ABM = tam giác KBM ( cạnh huyền - góc nhọn )
=> BA = BK nên B thuộc đường trung trực của AK
MA = MK nên K thuộc đường trung trực của AK
Vậy BM là đường trung trực của AK
b) Xét hai tam giác vuông AMN và tam giác KMC có :
góc AMN = góc KMC ( đối đỉnh )
MA = MK ( theo câu a )
Do đó : tam giác AMN = KMC ( cạnh góc vuông - góc nhọn )
Vậy MC = MN
c) Phần c không dõ đề bài nên mk k giải đc câu c nếu muốn giải câu c thì cậu gửi đề bài cho mk mk giải cho
d) Ta có : AB + AN = BN
BK + KC = BC
Mà BA = BK ( theo câu a )
AN = KC ( Theo câu b )
=> BN = BC ( *)
Xét tam giác NBM và tam giác CBM có :
BM là cạnh chung
BN = BC ( theo *)
góc NBM = góc CBM ( gt )
Do đó : tam giác NBM = tam giác CBM ( c.g.c )
=> góc BMN = góc BMC
mà góc BMN + góc BMC = 180°
=> góc BMN = góc BMC = 180° : 2
=> góc BMN = góc BMC = 90°
Vậy BM vuông hóc với NC
HỌC TỐT
Hình bn tự vẽ nhé
a. Xét hai tam giác vuông ABM và tam giác vuông KBM có;
góc BAM = góc BKM = 90độ
cạnh BM chung
góc ABM = góc KBM [ vì BM là tia pg góc B ]
Do đó ; tam giác ABM = tam giác KBM [ cạnh huyền - góc nhọn ]
\(\Rightarrow\)AB = KB nên B \(\in\)đường trung trực của AK
và MA = MK nên M \(\in\)đường trung trực của AK
\(\Rightarrow\)BM là đường trung trực của AK
b.Xét hai tam giác vuông AMN và tam giác vuông KMC có ;
góc MAN = góc MKC = 90độ
AM = KM [ theo câu a ]
góc AMN = góc KMC [ đối đinh ]
Do đó ; tam giác AMN = tam giác KMC [ cạnh góc vuông - góc nhọn ]
\(\Rightarrow\)MN = MC [ cạnh tương ứng ]
c.Theo câu a ; tam giác ABM = tam giác KBM
\(\Rightarrow\)AM = KM [ cạnh tương ứng ] [ 1 ]
Xét tam giác KMC vuông tại K nên ;
MK bé hơn MC [ 2 ]
Từ [ 1 ] và [ 2 ] suy ra ;
AM bé hơn MC
d. Theo câu b ; tam giác AMN = tam giác KMC
\(\Rightarrow\)AN = KC [ cạnh tương ứng ]
mà BA = BK [ vì tam giác ABM = tam giác KBM theo câu a ]
\(\Leftrightarrow\)AN + BA = KC + BK
\(\Rightarrow\) BN = BC nên B thuộc đường trung trực của CN
mà MN = MC nên M thuộc đường trung trực của CN
Vậy BM thuộc đường trung trực của CN
\(\Rightarrow\)BM vuông góc với CN
Theo mk nghĩ thì câu c . So sánh AM với MC
d. BM vuông góc với CN
HỌC TỐT
Nhớ kb với mk nha