K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2019

A B C H D N M

Xét \(\Delta AHC\)và \(\Delta AHD\)ta có:

       HC = HD (gt)

        AH chung

    \(\widehat{DAH}=\widehat{CAH}=90^o\)

\(\Rightarrow\Delta AHC=\Delta AHD\left(c.g.c\right)\)

Vậy ...

11 tháng 5 2019

Cần giải gấp câu b và c ạ

11 tháng 5 2019

a) Xét tam giác AHC và tam giác AHD:

AH chung ; góc AHC = góc AHD (=90 độ) ; HC=HD (theo gt)

Vậy tam giác AHC bằng tam giác AHD (cgc)

b) Vì tam giác AHC bằng tam giác AHD (cgc) nên AC=AD (hai cạnh tương ứng)

Mà có M là trung điểm của AC, N là trung điểm của AD suy ra AM=AN

Xét tam giác AMN có AM=AN (cmt) nên tam giác AMN cân tại A.

Còn phần c) thì hình như bạn ghi nhầm đề bài hay sao ấy (?)

11 tháng 5 2019

mik vẽ hình hơi xấu thông cảm

a) bạn tự cm nhé

b.theo a có tam giác AHD=tam giác AHC(c-g-c)=>AD=AC(2 cạnh TƯ)

=>1/2AD=1/2AC=>AN=AM

=>t/giác ANM cân tại A(đpcm)

c.Vì N là trung điểm của AD=>ND=NA=>CN là trung tuyến t/giác ADC(1)

Vì M là trung tuyến của t/giác ADC(2)

vì HD=HC=> AH là trung tuyến t/giác ADC(3)

từ (1),(2),(3)=>AH,CN,DM cắtt nhau tại 1 điểm

mà CN giao DM={E}=>AH,CN,DM cắt nhau tại E=>E thuộc AH=>A,E,H là 3 điểm thẳng hàng(đpcm)

k nha

20 tháng 2 2020

a, AH = AD (gt)

=> tam giác AHD cân tại A (đn)

=> góc ADI = góc AHI (tc)

xét tam giác ADI và tam giác AHI có : AD = AH (gt)

DI = IH do I là trung điểm của DH (gt)

=> tam giác ADI = tam giác AHI (c-g-c)

b, tam giác AHC vuông tại H 

=> góc CAH + góc ACH = 90 (đl)

có ACH = 30 (gt)

=> góc CAH = 60

xét tam giác AHD cân tại A (câu a)

=> tam giác AHD đều (dh)

c, tam giác ADI = tam giác AHI (Câu a)

=>  góc DAK = góc HAK (đn)

xét tam giác DAK và tam giác HAK có : AK chung

AD = AH (gt)

=> tam giác DAK = tam giác HAK (c-g-c)

a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có

HA=HD

HB chung

Do đó:ΔABH=ΔDBH

Suy ra: BA=BD

hay ΔBAD cân tại B

b: Xét ΔCAD có 

CH là đường trung tuyến

DM là đường trung tuyến

AN là đường trung tuyến

CH cắt DM tại G

Do đó: A,G,N thẳng hàng

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = ODa) Chứng minh tam giác OAD = tam giác OCBb) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMBc) Chứng minh rằng OM là tia phân giác của góc xOy2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BCa) Chứng minh tam giác ABM = tam giác...
Đọc tiếp

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD

a) Chứng minh tam giác OAD = tam giác OCB

b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB

c) Chứng minh rằng OM là tia phân giác của góc xOy

2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC

a) Chứng minh tam giác ABM = tam giác ACM

b) Chứng minh AM vuông góc với BC.

c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB

d) Chứng minh EF = BC

3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B

a) Chứng minh rằng: EA = EC và EB = ED

b) Chứng minh rằng: C, E, B thẳng hàng

c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN

4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng

a) Tam giác DBC = tam giác DAM

b) AM//BC

c) M, A, N thẳng hàng

0
11 tháng 2 2020

A B C H D I K I E

a) Xét \(\Delta ADI\)và \(\Delta AHI\),ta có:

-AD=AH (GT)

AI chung

DI = HI (GT- I là trung điểm HD )

=> \(\Delta ADI=\Delta AHI\left(c.c.c\right)\)

b) từ a, suy ra \(\widehat{HAI}=\widehat{DAI}\)hay \(\widehat{HAK}=\widehat{DAK}\)

Xét \(\Delta AHK\)và \(\Delta ADK\), ta có:

AH = AD (gt)

\(\widehat{HAK}=\widehat{DAK}\)( chứng minh trên)

AK chung

=> \(\Delta AHK=\Delta ADK\left(c.g.c\right)\)

=> \(\widehat{ADK}=\widehat{AHK}=90^o\)

=> \(DK\perp AC\)

mà \(AB\perp AC\)

=> DK // AB (1)

c, nối E với D

- Xét \(\Delta ADE\)và \(\Delta AHC\), ta có:

AD=AH(gt)

\(\widehat{DAE}=\widehat{HAC}\)( chung góc A)

AE = AC ( vì AH=AD, HE= DC=> AH+HE = AD+DC => AE=AC)

=>\(\Delta ADE=\Delta AHC\left(c.g.c\right)\)

=> \(\widehat{ADE}=\widehat{AHC}=90^o\) hay \(DE\perp AC\)=> DE // AB (2)

Từ (1) và (2) , suy ra D,K,E thẳng hàng (đpcm)

7 tháng 9 2021
A: Ta có tam giác ABC cân tại A. =>AB=AC(2cạnh tương ứng) Xét tam giác ABH và tam giác ACH có: AB:Cạnh chung GÓC BAH= GÓC CAH(Theo bài ra) AB=AC(Cmt) =>Tam giác ABH=Tam giác ACH(c.g.c) Phần B thì nghỉ dịch nhiều quá nên mk ko biết nó đối theo hướng nào nên ko làm đc. Sorry bn😪 CHÚC BN HOK TỐT.😍