Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AHC và tam giác AHD:
AH chung ; góc AHC = góc AHD (=90 độ) ; HC=HD (theo gt)
Vậy tam giác AHC bằng tam giác AHD (cgc)
b) Vì tam giác AHC bằng tam giác AHD (cgc) nên AC=AD (hai cạnh tương ứng)
Mà có M là trung điểm của AC, N là trung điểm của AD suy ra AM=AN
Xét tam giác AMN có AM=AN (cmt) nên tam giác AMN cân tại A.
Còn phần c) thì hình như bạn ghi nhầm đề bài hay sao ấy (?)
mik vẽ hình hơi xấu thông cảm
a) bạn tự cm nhé
b.theo a có tam giác AHD=tam giác AHC(c-g-c)=>AD=AC(2 cạnh TƯ)
=>1/2AD=1/2AC=>AN=AM
=>t/giác ANM cân tại A(đpcm)
c.Vì N là trung điểm của AD=>ND=NA=>CN là trung tuyến t/giác ADC(1)
Vì M là trung tuyến của t/giác ADC(2)
vì HD=HC=> AH là trung tuyến t/giác ADC(3)
từ (1),(2),(3)=>AH,CN,DM cắtt nhau tại 1 điểm
mà CN giao DM={E}=>AH,CN,DM cắt nhau tại E=>E thuộc AH=>A,E,H là 3 điểm thẳng hàng(đpcm)
k nha
Sửa đề: ΔABC vuông tại C
a) Xét ΔAHC vuông tại H và ΔAHD vuông tại H có
AH chung
HC=HD(gt)
Do đó: ΔAHC=ΔAHD(hai cạnh góc vuông)
Hình bạn tự vẽ nhé.
a. Vì AD là tia phân giác của \(\widehat{BAC}\) (gt)
nên \(\widehat{BAD}=\widehat{CAD}\)
Xét \(\Delta ABD\) và \(\Delta ACD\) có:
AD là cạnh chung
\(\widehat{BAD}=\widehat{CAD}\) (chứng minh trên)
AB = AC
\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\) (đpcm)
b. Gọi giao điểm của MN và AD là S
Ta có: \(\widehat{BAD}=\widehat{CAD}\Rightarrow\widehat{MAS}=\widehat{NAS}\)
Xét \(\Delta AMS\) và \(\Delta ANS\) có:
AS là cạnh chung
\(\widehat{MAS}=\widehat{NAS}\) (chứng minh trên)
AM = AN (gt)
\(\Rightarrow\Delta AMS=\Delta ANS\left(c.g.c\right)\)
\(\Rightarrow\widehat{ASN}=\widehat{ASM}\) (2 góc tương ứng)
Mà \(\widehat{ASN}+\widehat{ASM}=180^o\) (2 góc kề bù)
\(\Rightarrow\widehat{ASN}=\widehat{ASM}=\dfrac{180^o}{2}=90^o\)
\(\Rightarrow AS\perp MN\)
hay \(AD\perp MN\) (đpcm)
c. Ta có: AM = AN (gt)
\(\Rightarrow\Delta AMN\) cân tại A (dấu hiệu nhận biết)
\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{MAN}}{2}\) (định lí)
hay \(\widehat{AMN}=\dfrac{180^o-\widehat{BAC}}{2}\) (1)
Lại có: AB = AC (gt)
\(\Rightarrow\Delta ABC\) cân tại A (dấu hiệu nhận biết)
\(\Rightarrow\widehat{ABC}=\dfrac{180^o-\widehat{BAC}}{2}\) (định lí) (2)
Từ (1), (2)
\(\Rightarrow\widehat{AMN}=\widehat{ABC}\)
Mà 2 góc này ở vị trí đồng vị
\(\Rightarrow\) MN // BC (dấu hiệu nhận biết) (*)
Xét \(\Delta MOP\) và \(\Delta BDO\) có:
MO = BO (vì O là trung điểm của BM)
\(\widehat{MOP}=\widehat{BOD}\) (2 góc đối đỉnh)
OD = PO (gt)
\(\Rightarrow\Delta MOP=\Delta BOD\left(c.g.c\right)\)
\(\Rightarrow\widehat{MOP}=\widehat{BDO}\) (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow\) MP // BC (dấu hiệu nhận biết) (**)
Từ (*), (**)
\(\Rightarrow\) Qua điểm M ở ngoài đường thẳng BC, ta vừa có MN // BC, MP // BC (trái với tiên đề Ơ-clit)
\(\Rightarrow\) 3 điểm P, M, N thẳng hàng (đpcm)
Xét \(\Delta AHC\)và \(\Delta AHD\)ta có:
HC = HD (gt)
AH chung
\(\widehat{DAH}=\widehat{CAH}=90^o\)
\(\Rightarrow\Delta AHC=\Delta AHD\left(c.g.c\right)\)
Vậy ...
Cần giải gấp câu b và c ạ