K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

12 tháng 1 2022

hmmmmmmmmmmm

a: Xét ΔBID và ΔCIA có 

IB=IC

\(\widehat{BID}=\widehat{CIA}\)

ID=IA

Do đó: ΔBID=ΔCIA

b: Xét tứ giác ABDC có 

I là trung điểm của AD

I là trung điểm của BC

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

Suy ra: BD\(\perp\)AB

25 tháng 12 2016

Mình vẽ nhầm hình nha, để mình vẽ lại ở dưới cái nào để chữ vẽ lại thì bạn vẽ cái đó

Đây là bài làm

a) Δ BID và Δ CIA có:

ID=IB (gt)

DIB=CIA (đói đỉnh)

IA=ID (gt)

=> Δ BID=Δ CIA (c.g.c)

b) Ta có: AM // BC

=> MAB=CAB (so le trong)

Δ BID=Δ CIA (cmt)

=> BDI=CAI ( 2 góc tương ứng)

và chúng ở vị trí so le trong

=> CA // DM

Ta có: CA // DM (cmt)

=> CAB=MBA=900 (so le trong)

Δ BAM và Δ ABC có:

MAB=CAB (cmt)

BA cạnh chung

CAB=MBA=900 (cmt)

=> Δ BAM=Δ ABC (g.c.g)

c)Δ BAM=Δ ABC

=> BM=AC (2 cạnh tương ứng)

Mà AC=BD ( Δ BID=Δ CIA)

=>BM=BD

MBA=900 (cmt)

mà MBA+ABD=1800 ( kề bù)

900 +ABD=1800

=>ABD=1800-900=900

=>MBA=ABD

Δ ADB=Δ AMB có:

BM=BD (cmt)

MBA=ABD (cmt)

AB cạnh chung

=> Δ ADB=Δ AMB ( g.c.g)

=>MAB=DAB (2 góc tương ứng)

Vậy AB là phân giác góc DAM

 

 

 

 

25 tháng 11 2016

@Trần Nghiên Hy mk đang quen cách làm của lớp 8 rồi, chả nhớ j lớp 7 cả

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:a) AM=IKb) Tam giác AMI bằng tam giác IKCc) AI=ICBài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IAa) CMR tam giác BID bằng tam giác CIAb) CMR : BD vuông góc với ABc) Qua A kẻ đường thẳng song song với BC cắt đường...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:

a) AM=IK

b) Tam giác AMI bằng tam giác IKC

c) AI=IC

Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA

a) CMR tam giác BID bằng tam giác CIA

b) CMR : BD vuông góc với AB

c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC

d) CMR: AB là tia phân giác cuả góc DAM

Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC

a) C/M: tam giác AKB bằng tam giác AKC

b) C/M: AK vuông góc với BC

c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK

Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR

a) BD= CE

b) tam giác OEB bằng tam giác ODC

c) AO là tia phân giác cua góc BAC

 

3
21 tháng 2 2017

la sao eo hieu anh oi em moi lop 5 anh lop 7 saoe lam dc ha troi,voi lai bai do cau hoi giong em nhung bai em la tim ti so % cua AI va IC anh lam dc ko giai giup em voi anh.Anh ko giai dc xung dang lam gi la lop 7 ha anh,em noi co dung ko????EM NOI VAY LA DUNG CHINH XAC,DUNG CCMNR!!!!!!!!!!!!:))))))

6 tháng 12 2017

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:

a) AM=IK

b) Tam giác AMI bằng tam giác IKC

c) AI=IC

Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR

a) BD= CE

b) tam giác OEB bằng tam giác ODC

c) AO là tia phân giác cua góc BAC

Được cập nhật 41 giây trước (20:12)

14 tháng 4 2022

a) Δ BID và Δ CIA có:

ID=IB (gt)

DIB=CIA (đối đỉnh)

IA=ID (gt)

=> Δ BID=Δ CIA (c.g.c)

b) Ta có: AM // BC

=> MAB=CAB (so le trong)

Δ BID=Δ CIA (cmt)

=> BDI=CAI ( 2 góc tương ứng)

và chúng ở vị trí so le trong

=> CA // DM

Ta có: CA // DM (cmt)

=> CAB=MBA=900 (so le trong)

Δ BAM và Δ ABC có:

MAB=CAB (cmt)

BA cạnh chung

CAB=MBA=900 (cmt)

=> Δ BAM=Δ ABC (g.c.g)

c)Δ BAM=Δ ABC

=> BM=AC (2 cạnh tương ứng)

Mà AC=BD ( Δ BID=Δ CIA)

=>BM=BD

MBA=900 (cmt)

mà MBA+ABD=180( kề bù)

900 +ABD=1800

=>ABD=1800-900=900

=>MBA=ABD

Δ ADB=Δ AMB có:

BM=BD (cmt)

MBA=ABD (cmt)

AB cạnh chung

=> Δ ADB=Δ AMB ( g.c.g)

=>MAB=DAB (2 góc tương ứng)

Vậy AB là phân giác góc DAM

undefined

14 tháng 4 2022

Bạn ơi, vì mình k thể kí hiệu góc. Nên bạn tự ghi góc vào bài làm của mình nhé

a: Xét ΔBID và ΔCIA có 

IB=IC

\(\widehat{BID}=\widehat{CIA}\)

ID=IA

Do đó: ΔBID=ΔCIA

b: Xét tứ giác ABDC có 

I là trung điểm của BC

I là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

Suy ra: BD\(\perp\)AB

6 tháng 1 2019

A B C I D M

Cm : a) Xét tam giác BID và tam giác CIA

có BI = CI(gt)

  góc DIB = góc CIA ( đối đỉnh)

DI = AI (gt)

=> tam giác BID = tam giác CIA (c.g.c)

b) Tam giác CIA = tam giác BID (cmt)

=> góc C = góc IBD ( hai góc tương ứng)

Mà góc C và góc IBD ở vị trí so le trong

=> AC // BD 

=> góc A + góc B = 1800 (trong cùng phía)

=> góc B = 1800 - góc A = 1800 - 900 = 900

=> BD \(\perp\)AB

c) Ta có : góc DBA + góc ABM = 1800 (kề bù)

=> góc ABM = 180- góc DBA = 1800 - 900= 900

Ta lại có : AM // BC (gt)

=> góc CBA = góc BAM (so le trong)

Xét tam giác BAM và tam giác ABC

có góc BAM = góc CBA (cmt)

AB : chung

góc CAB = góc ABM = 900 (cmt)

=> tam giác BAM = tam giác ABC (g.c.g)

d) tự làm