K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2023

Bài 1:

a: Xét tứ giác ABEC có

D là trung điểm chung của AE và BC

nên ABEC là hình bình hành

Hình bình hành ABEC có \(\widehat{BAC}=90^0\)

nên ABEC là hình chữ nhật

b: ABEC là hình chữ nhật

=>AB//CE và AB=CE

AB=CE

AB=AF

Do đó: CE=AF

AB//CE

\(A\in BF\)

Do đó: BF//CE

=>FA//CE

Xét tứ giác AECF có

AF//CE

AF=CE

Do đó: AECF là hình bình hành

=>AE//CF

c: Xét tứ giác BECF có

BF//CE

nên BECF là hình thang

Hình thang BECF có \(EB\perp BF\)

nên BECF là hình thang vuông

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AB^2=10^2-8^2=36\)

=>AB=6(cm)

ABEC là hình chữ nhật

=>\(S_{ABEC}=AB\cdot AC=6\cdot8=48\left(cm^2\right)\)

ΔCAF vuông tại A

=>\(S_{ACF}=\dfrac{1}{2}\cdot AC\cdot AF=\dfrac{1}{2}\cdot6\cdot8=\dfrac{1}{2}\cdot48=24\)

=>\(S_{ABEC}>S_{ACF}\)

a: Xét tứ giác ABEC có 

M là trung điểm của đường chéo BC

M là trung điểm của đường chéo AE

Do đó: ABEC là hình bình hành

mà \(\widehat{CAB}=90^0\)

nên ABEC là hình chữ nhật

AH
Akai Haruma
Giáo viên
26 tháng 12 2023

Lời giải:

b. Ta thấy: $5^2+12^2=13^2$ hay $AB^2+AC^2=BC^2$ nên tam giác $ABC$ vuông tại $A$.

Tứ giác $ACEB$ có 2 đường chéo $BC,AE$ cắt nhau tại trung điểm $D$ của mỗi đường nên là hình bình hành.

Mà $\widehat{A}=90^0$ nên $ACEB$ là hình chữ nhật.

a. 

$ACEB$ là hcn nên $AE=BC=13$ (cm)

$\Rightarrow AD=AE:2=13:2=6,5$ (cm) 

c.

Để $ABEC$ là hình vuông thì $AB=AC$. Khi đó $ABC$ phải là tam giác vuông cân tại A chứ không liên quan gì đến điểm D hết bạn nhé.                     

AH
Akai Haruma
Giáo viên
26 tháng 12 2023

Hình vẽ:

a: Xét tứ giác ABDC có 

I là trung điểm của AD

I là trung điểm của BC

Do đó: ABDC là hình bình hành

mà \(\widehat{CAB}=90^0\)

nên ABDC là hình chữ nhật