K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

Phương An

a: ΔABC vuông tại A
mà AM là đường trung tuyến

nên MA=MB=MC

Ta có: MA=MB

=>ΔMAB cân tại M

=>\(\widehat{MAB}=\widehat{MBA}\)

Ta có: \(\widehat{DAB}+\widehat{MAB}=\widehat{DAM}=90^0\)

\(\widehat{HAB}+\widehat{HBA}=90^0\)(ΔHAB vuông tại H)

mà \(\widehat{MAB}=\widehat{HBA}\)(cmt)

nên \(\widehat{DAB}=\widehat{HAB}\)

=>AB là phân giác của góc DAH

 

22 tháng 2 2020

a)Xét tam giác ABC vuông tại A(gt),có:

AB^2+AC^2=BC^2(Đl pytago)

Thay số:36+64=BC^2

=>BC= căn 100=10cm

Xét tam giác ABC có BD là phân giác góc ABC(gt),có:

AB/AC=AD/DC(Tính chất đường phân giác trong tam giác)

<=>AB/AB+AC=AD/AD+DC(Tính chất tỉ lệ thức)

Thay số:6/16=AD/8

<=>16AD=48

<=>AD=3cm

Vì D thuộc AC(gt)

=>AD+DC=AC

Thay số:3+DC=8

<=>DC=5cm

b) Xét tam giác ABC vuông tại A(gt),có:

SABC=(AB.AC)/2=24cm^2

Mà SABC=(AH.BC)/2

=>(AH.10)/2=24

<=>AH=24.2÷10=4,8cm

Xét tam giác ABC đồng dạng tam giác HAC có:

+Góc C chung

+Góc AHC=góc BAC=90 độ

=>tam giác ABC đồng dạng tam giác HAC(g.g)

=> AH/AB=CH/AC(Cặp cạnh tương ứng)

Thay số : 4,8/6=CH/8

=>CH=4,8.8÷6=6,4cm

c)

a: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

 

3: 

\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

HB=12^2/20=7,2cm

=>HC=20-7,2=12,8cm

\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)

10 tháng 8 2021

a) BD.\(\sqrt{CH}+CE\sqrt{BH}=AH\sqrt{BC}\)

\(\Leftrightarrow BD\sqrt{CH.BC}+CE\sqrt{BH.BC}=AH.BC=AB.AC\)

\(\Leftrightarrow BD\sqrt{AC^2}+CE\sqrt{AB^2}=AB.AC\Leftrightarrow\dfrac{BD}{AB}+\dfrac{CE}{AC}=1\) (đẳng thức đúng)

Áp dụng định lí Ta- lét ta có:

\(\dfrac{BD}{AB}=\dfrac{BH}{BC};\dfrac{CE}{AC}=\dfrac{CH}{BC}\)

\(\dfrac{BD}{AB}+\dfrac{CE}{AC}=\dfrac{BH+CH}{BC}=\dfrac{BC}{BC}=1\)

10 tháng 8 2021

em mới học lớp 8 nên cách này em ko hiểu ạ
có cách nào đơn giản ko ạ

a) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(Gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{AB}{3}=\dfrac{BC}{5}\)

Ta có: AD+CD=AC(D nằm giữa A và C)

nên AC=3+5=8(cm)

Đặt \(\dfrac{AB}{3}=\dfrac{BC}{5}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=3k\\BC=5k\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\left(3k\right)^2+8^2=\left(5k\right)^2\)

\(\Leftrightarrow9k^2+64=25k^2\)

\(\Leftrightarrow16k^2=64\)

\(\Leftrightarrow k^2=4\)

hay k=2

Suy ra: \(\left\{{}\begin{matrix}AB=3\cdot k=3\cdot2=6\left(cm\right)\\BC=5\cdot k=5\cdot2=10\left(cm\right)\end{matrix}\right.\)

Vậy: AB=6cm; BC=10cm