K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

∆ ADB =  ∆ AHB ⇒ BD = BH.

∆ AEC =  ∆ AHC ⇒ CE = CH.

Vậy BD + CE = BH + CH = BC.

3 tháng 11 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Điểm D đối xứng điểm H qua trục AB.

Suy ra AB là đường trung trực của HD

⇒ AH = AD (tính chất đường trung trực)

⇒ ∆ ADH cân tại A

Suy ra: AB là tia phân giác của ∠ (DAH)

⇒  ∠ (DAB) =  ∠ A 1

Điểm H và điểm E đối xứng qua trục AC

⇒ AC là đường trung trực của HE

⇒ AH = AE (tính chất đường trung trực) ⇒  ∆ AHE cân tại A

Suy ra: AC là đường phân giác của góc (HAE) ⇒  ∠ A 2  =  ∠ (EAC)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

⇒ D, A, E thẳng hàng

Ta có: AD = AE (vì cùng bằng AH)

Suy ra điểm A là trung điểm của đoạn DE.

Vậy điểm D đối xứng với điểm E qua điểm A

30 tháng 11 2021

a: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

1: Ta có: D và H đối xứng nhau qua AB

nên AB là đường trung trực của DH

Suy ra: AH=AD

Xét ΔAHD có AH=AD

nên ΔAHD cân tại A

mà AB là đường trung trực ứng với cạnh đáy HD

nên AB là tia phân giác của \(\widehat{HAD}\)

Ta có: H và E đối xứng nhau qua AC

nên AC là đường trung trực của HE

Suy ra: AE=AH

Xét ΔAEH có AE=AH

nên ΔAEH cân tại A

mà AC là đường trung trực ứng với cạnh đáy HE

nên AC là tia phân giác của \(\widehat{EAH}\)

Ta có: \(\widehat{DAE}=\widehat{EAC}+\widehat{HAC}+\widehat{HAB}+\widehat{DAB}\)

\(=2\cdot\left(\widehat{HAC}+\widehat{HAB}\right)\)

\(=2\cdot90^0=180^0\)

Suy ra: D,A,E thẳng hàng

mà AE=AD(=AH)

nên A là trung điểm của DH

2: Ta có: DE=AD+AE

nên DE=AH+AH

hay DE=2AH

a: Xét tứ giác AHCD có

M là trung điểm chung của AC vàHD

góc AHC=90 độ

Do đó: AHCD là hình chữ nhật

b: Xét tứ giác ADHE có

AD//HE

AD=HE

Do đó: ADHE là hình bình hành