K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra: AH=DE

8 tháng 11 2022

Giỏi vậy 

28 tháng 10 2023

1: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2+9=36\)

=>\(AC^2=27\)

=>\(AC=3\sqrt{3}\left(cm\right)\)

Chu vi tam giác ABC là:

\(3+3\sqrt{3}+6=9+3\sqrt{3}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot6=3\cdot3\sqrt{3}=9\sqrt{3}\)

=>\(AH=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)

2: 

a: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>EF=AH

b: Xét ΔHAB vuông tại H có HE là đường cao

nên \(EA\cdot EB=HE^2\)

ΔHAC vuông tại H có HF là đường cao

nên \(FA\cdot FC=HF^2\)

\(EA\cdot EB+FA\cdot FC\)

\(=HE^2+HF^2=EF^2\)

31 tháng 7 2021

a) tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng

\(\Rightarrow AE.AB=AH^2\)

tam giác AHC vuông tại H có đường cao HF nên áp dụng hệ thức lượng

\(\Rightarrow AF.AC=AH^2=AE.AB\)

b) \(AE.AB=AF.AC\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét \(\Delta AEF\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AE}{AC}=\dfrac{AF}{AB}\\\angle BACchung\end{matrix}\right.\)

\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c-g-c\right)\)

c) Ta có: \(AH^4=AH^2.AH^2=AE.AB.AF.AC\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH^4=AE.AF.BC.AH\Rightarrow AH^3=AE.AF.BC\)

 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

b) Ta có: \(AE\cdot AB=AF\cdot AC\)
nên \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAFE vuông tại A và ΔABC vuông tại A có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

Do đó: ΔAFE\(\sim\)ΔABC(c-g-c)

22 tháng 8 2023

Bạn tự vẽ hình.

(a) \(BC^2=AB^2+AC^2\left(Pythagoras\right)\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

+) \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\Rightarrow\hat{B}\approx53^o\)

+) \(\hat{C}=90^o-\hat{B}\approx90^o-53^o=37^o\)

(b) +) \(AB.AC=BC.AH\Leftrightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\)

\(\hat{A}=\hat{E}=\hat{F}=90^o\left(gt\right)\Rightarrow AEHF\) là hình chữ nhật.

Do đó, \(EF=AH\left(đpcm\right)\)

22 tháng 8 2023

ok bn

 

15 tháng 6 2019

A B C I E H M

Số tự thêm ha

a/ Xét tam giác ABC, áp dụng Định lí Pitago đảo:

\(AB^2+AC^2\)

\(=9^2+12^2=225=15^2=BC^2\)

=> Tam giác ABC vuông

b/ Xét tam giác ABCvuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)(định lí 4)

\(\frac{1}{AH^2}=\frac{1}{9^2}+\frac{1}{12^2}=\frac{25}{1296}\)

\(\Rightarrow AH^2=\frac{1296}{25}\Rightarrow AH=7,2\)(cm)

Xét tam giác ABC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:

\(AB^2=BH\cdot BC\)(đinh lí 1)

\(9^2=BH\cdot15\)

\(\Rightarrow BH=5,4\)(cm)

c/ Xét tam giác ABH vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:

\(AH^2=AE\cdot AB\)(định lí 1) [1]

Xét tam giác AHC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:

\(AH^2=AI\cdot IC\)(đinh lí 1) [2]

Từ [1], [2] \(\Rightarrow AE\cdot AB=AI\cdot AC\)(đpcm)

d/ Gọi M là đường trung tuyến tam giác ABC

\(\Rightarrow BM=MC=\frac{BC}{2}=AM\)

Xét tam giác ABC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:

\(AH^2=BH\cdot HC\)(định lí 2)

\(\Rightarrow\sqrt{BH\cdot HC}=\sqrt{AH^2}=AH\)

Mà \(AH\le AM\)(  AH = AM với trường hợp AH trùng AM )

\(\Rightarrow\sqrt{HB\cdot HC}\le\frac{BC}{2}\)(đpcm)

p/s Hình hơi xấu nhé, thông cảm >:

16 tháng 6 2019

Ahwi:

Bài d nếu thay số vào thì có được không bạn? do mik thấy các cạnh trên đều tìm được??

a:

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=10^2-6^2=64\)

hay AC=8

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8cm

a: BH=3,6cm

CH=6,4cm

1 tháng 8 2023

.Ta có :

AH⊥BC,HE⊥AB→\(\widehat{AEH}=\widehat{AHB}\)

=> \(\Delta AEH\approx\Delta AHB\)(g.g)

=>\(\dfrac{AE}{AH}=\dfrac{AH}{AB}\)

=>AH\(^2\)=AE.AB

Lam tuong tu ta dc AH\(^2\)=AF.AC

=> AE.AB=AF.AC

 

a: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nen AF*AC=AH^2

=>AE*AB=AF*AC

=>AE/AC=AF/AB

=>ΔAEF đồng dạng với ΔACB