Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Áp dụng HTL2 vào tam giác ABC cuông tại A, đường cao AH ta có:
AH2=BH.HC=9.16=144
<=>AH=√144=12((cm)
Áp dụng định lý Pytago vào tam giác vuông BHA ta có:
BA2=AH2+BH2=122+92=225
<=>BA=√225=15(cm)
Áp dụng định lý Pytago vào tam giác vuông CHA ta có:
CA2=AH2+CH2=122+162=20(cm)
Vậy AB=15cm,AC=20cm,AH=12cm
1: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2+9=36\)
=>\(AC^2=27\)
=>\(AC=3\sqrt{3}\left(cm\right)\)
Chu vi tam giác ABC là:
\(3+3\sqrt{3}+6=9+3\sqrt{3}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot6=3\cdot3\sqrt{3}=9\sqrt{3}\)
=>\(AH=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)
2:
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>EF=AH
b: Xét ΔHAB vuông tại H có HE là đường cao
nên \(EA\cdot EB=HE^2\)
ΔHAC vuông tại H có HF là đường cao
nên \(FA\cdot FC=HF^2\)
\(EA\cdot EB+FA\cdot FC\)
\(=HE^2+HF^2=EF^2\)
ta có
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(a+b-2\sqrt{ab}\ge0\)
\(a+b\ge2\sqrt{ab}\)
\(\frac{a+b}{2}\ge\sqrt{ab}\)
Ta có AH2=CH.BH=ab (1)
Gọi M là trung điểm của BC.
Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)
Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)
Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)
áp dụng hệ thức lượng vào tam giác vuông ABC có AH^2=BH.CH=9.16=144 nên AH=12 , áp dụng định lý pytago vào 2 tam giác ABH ,AHC ta được AB=15,AC=20 ADHE là hình chữ nhật vi có 3 góc=90độ áp dụng hệ thức lượng ta tính được AD và DH
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=12^2+16^2=400\)
hay BC=20(cm)
Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(gt)
nên \(AM=\dfrac{BC}{2}=\dfrac{20}{2}=10\left(cm\right)\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH\cdot20=12\cdot16=192\\BH\cdot20=12^2=144\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}AH=9,6\left(cm\right)\\BH=7,2\left(cm\right)\end{matrix}\right.\)
Chu vi tam giác ABH là:
\(C_{ABH}=AH+BH+AB\)
\(=9,6+7,2+12\)
\(=28,8\left(cm\right)\)
c) Xét ΔAMB có MD là đường phân giác ứng với cạnh AB(gt)
nên \(\dfrac{AM}{MB}=\dfrac{AD}{DB}\)(1)
Xét ΔAMC có ME là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AM}{MC}=\dfrac{AE}{EC}\)(2)
Từ (1) và (2) suy ra \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)
\(\Leftrightarrow\dfrac{DB}{AD}=\dfrac{EC}{AE}\)
\(\Leftrightarrow\dfrac{DB+AD}{AD}=\dfrac{EC+AE}{AE}\)
hay \(\dfrac{AB}{AD}=\dfrac{AC}{AE}\)
Xét ΔABC vuông tại A và ΔADE vuông tại A có
\(\dfrac{AB}{AD}=\dfrac{AC}{AE}\)(cmt)
Do đó: ΔABC\(\sim\)ΔADE(c-g-c)
Giải :
Ta có hình vẽ :
a ) Ta có :
+ ) \(AH^2=BH.CH=9.16=144cm^2\)
\(\Rightarrow AH=12cm\)
+ ) \(AB^2=BH.BC=9.25=225cm^2\)
\(\Rightarrow AB=15cm\)
+ ) \(AC^2=CH.BC=16.25=400cm^2\)
\(\Rightarrow AC=20cm\)
b ) Chứng minh được tứ giác ADHE là hình chữ nhật
c ) Ta có :
+ ) \(HD.AB=HA.HB\)
\(\Rightarrow HD=\frac{HA.HB}{AB}=\frac{12.9}{15}=7,2cm\)
+ ) \(HE.AC=HA.HC\)
\(\Rightarrow HE=\frac{HA.HC}{AC}=\frac{12.16}{20}=9,6cm\)
\(\Rightarrow P\left(ADHE\right)=\left(7,2+9,6\right).2=33,6\left(cm\right)\)
\(\Rightarrow S\left(ADHE\right)=7,2\times9,6=69,12\left(cm^2\right)\)
Có \(\widehat{ADH}=\widehat{AEH}=90^0\)
=> Tứ giác ADHE nội tiếp đt
=> \(\widehat{AED}=\widehat{AHD}\) mà \(\widehat{AHD}=\widehat{ABC}\) (vì cùng phụ với \(\widehat{HAB}\))
=> \(\widehat{AED}=\widehat{ABC}\) mà \(\widehat{DAE}=\widehat{BDH}=90^0\)
=> \(\Delta ADE\sim\Delta DHB\left(g.g\right)\) \(\Rightarrow\dfrac{C_{ADE}}{C_{DHB}}=\dfrac{AD}{DH}\)
CM tt: \(\dfrac{C_{ADE}}{C_{ECH}}=\dfrac{AE}{EH}=\dfrac{DH}{AD}\)
\(\Rightarrow\dfrac{C_{ADE}}{C_{ECH}}.\dfrac{C_{ADE}}{C_{DHB}}=1\Rightarrow\)\(\dfrac{\left(C_{ADE}\right)^2}{ab}=1\)\(\Leftrightarrow C_{ADE}=\sqrt{ab}\)