K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2021

sửa BC =12 cm, 122 to quá:v mình nghĩ bạn đánh lỗi 

Ta có : \(\frac{5}{6}=\frac{AB}{AC}\Rightarrow AB=\frac{5}{6}AC\)

Theo định lí Pytago tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow144=\left(\frac{5}{6}AC\right)^2+AC^2\Rightarrow AC=\frac{72}{\sqrt{61}}=\frac{72\sqrt{61}}{61}\)cm 

\(\Rightarrow AB=\frac{60\sqrt{61}}{61}\)cm 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{\frac{5184}{61}}{12}=\frac{432}{61}\)cm 

=> \(CH=BC-BH=12-\frac{432}{61}=\frac{300}{61}\)cm 

6 tháng 12 2018

BH = 50cm, CH = 72cm

30 tháng 9 2018

a, HB = 1,8cm; CH = 3,2cm; AH = 2,4cm; AC = 4cm

b, AB = 65cm; AC = 156cm; BC = 169cm; BH = 25cm

c, AB = 5cm; BC = 13cm; BH = 25/13cm; CH = 144/13cm

4 tháng 8 2016
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
4 tháng 8 2016

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o

20 tháng 9 2021

GIÚP mình thật đầy đủ nhất

Bài 2: 

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{25}{36}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: HB+HC=BC

\(\Leftrightarrow HC\cdot\dfrac{61}{36}=122\)

\(\Leftrightarrow HC=72\left(cm\right)\)

hay HB=50(cm)

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

16 tháng 6 2017

a, HB = 1,8cm; CH = 3,2cm; AH = 2,4cm; BC = 5cm

b, AB = 15cm; AC = 20cm; AH = 12cm; BC = 25cm

ABCHÁp dụng định lý Py - ta - Go vào tam giác ABC vuông tại A có :

AC2 = BC2 - AB2

AC2 = 52−32=3(AC>0)

Ta có : SABC=12AB.AC

Mà : SABC=12AH.BC

⇒ 12AB.AC=12AH.BC

⇔ AH = 

ACBH

a) Áp dụng pi ta go ta có : AB2 = AH2 + BH2 = 162 + 252 = 881 

=> AB = 881

Lại có : BH.HC =  AH2

<=> HC.25 = 162

<=> HC.25 = 256

<=> HC = 256 : 25 = 10,24

Ta có : BC = HC + BH = 10,24 + 25 = 35,24 

Áp dụng bi ta go : AC2 = AH2 + HC2 = 162 + 10,242 = 360,8576

=> AC = 

Ta có: \(\frac{AB}{AC}=\frac{5}{6}\)

\(\Leftrightarrow AB=\frac{5\cdot AC}{6}\)

Áp dụng định lí pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\left(\frac{5\cdot AC}{6}\right)^2+AC^2=122^2\)

\(\Leftrightarrow\frac{25\cdot AC^2}{36}+AC^2=14884\)

\(\Leftrightarrow AC^2\left(\frac{25}{36}+1\right)=14884\)

\(\Leftrightarrow AC^2\cdot\frac{61}{36}=14884\)

\(\Leftrightarrow AC^2=14884:\frac{61}{36}=14884\cdot\frac{36}{61}=8784\)

\(\Leftrightarrow AC=\sqrt{8784}=12\sqrt{61}cm\)

Ta có: \(\frac{AB}{AC}=\frac{5}{6}\)

\(\Leftrightarrow\frac{AB}{12\sqrt{61}}=\frac{5}{6}\)

\(\Leftrightarrow AB=\frac{5\cdot12\sqrt{61}}{6}=10\sqrt{61}cm\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có đường cao AH ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(10\sqrt{61}\right)^2=BH\cdot122\\\left(12\sqrt{61}\right)^2=CH\cdot122\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}BH\cdot122=6100\\CH\cdot122=8784\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=50cm\\CH=72cm\end{matrix}\right.\)

Vậy: BH=50cm; CH=72cm

9 tháng 7 2018

Theo định lý Pi-ta-go thì \(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác ta có:

\(BH=\frac{5^2}{13}=\frac{25}{13}\left(cm\right)\)

\(BH=\frac{12^2}{13}=\frac{144}{13}\left(cm\right)\)

AB/AC=5/6

=>BH/CH=25/36

=>BH/25=CH/36=k

=>BH=25k; CH=36k

AH^2=HB*HC

=>900k^2=12^2=144

=>k=2/5

=>BH=10cm; CH=14,4cm