K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

a) Xét △ABC và △HBA có:

góc BAC = góc BHA = 90 độ

góc B chung

⇔ △ABC ∼ △HBA (g.g) (1)

⇔ AB/BC = HB/AB

⇒ AB2 = BC . BH (đpcm)

Xét △ABC và △HAC có:

góc BAC = góc AHC = 90 độ

góc C chung

⇔ △ABC ∼ △HAC (g.g) (2)

⇔ AB/BC = HA/AC

⇒ AB.AC=BC.AH (đpcm)

Từ (1),(2) ⇒ △ABH ∼ △CAH

⇒AH/BH=HC/AH

⇒ AH2= BH. HC (đpcm)

21 tháng 9 2019

a) Chứng minh được 

b) HS tự chứng minh

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC

Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA\(\sim\)ΔHAC

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\)(hệ thức lượng)

c: \(AB=\sqrt{BC^2-AC^2}=12\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

\(BH=\sqrt{AB^2-AH^2}=7.2\left(cm\right)\)

27 tháng 3 2022

Theo Pytago tam giác ABC vuông tại A ta có 

\(AC=\sqrt{BC^2-AB^2}=4cm\)

Ta có \(S_{ABC}=\dfrac{1}{2}.AH.BC;S_{ABC}=\dfrac{1}{2}.AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12}{5}\)cm 

9 tháng 4 2023

giúp mik vs ạ

 

11 tháng 4 2023

xem lại đầu bài của bạn đúng chưa vậy? mình thấy sai sai

 

AH
Akai Haruma
Giáo viên
2 tháng 5 2023

Lời giải:
a. Xét tam giác $ABC$ và $HBA$ có:
$\widehat{B}$ chung

$\widehat{BAC}=\widehat{BHA}=90^0$

$\Rightarrow \triangle ABC\sim \triangle HBA$ (g.g)

Ta có:
$AB.AC=AH.BC$ (cùng bằng 2 lần diện tích tam giác $ABC$)

b. 

Xét tam giác $BHA$ và $AHC$ có:

$\widehat{BHA}=\widehat{AHC}=90^0$

$\widehat{HBA}=\widehat{HAC}$ (cùng phụ góc $\widehat{BAH}$)

$\Rightarrow \triangle BHA\sim \triangle AHC$ (g.g)

$\Rightarrow \frac{BH}{HA}=\frac{AH}{HC}$

$\Rightarrow AH^2=BH.CH$.

AH
Akai Haruma
Giáo viên
2 tháng 5 2023

Hình vẽ:

22 tháng 5 2021

a) Cm tamgiac ABC đồng dạng với tamgiac HBA(g.g)

=> AB/BC = BH/AB hay AB^2 = BH.HC

và cm  tamgiac ABC đồng dạng với tamgiac HAC(g.g)

=> AC/BC = HC/AC hay AC^2 = CH.BH

22 tháng 5 2021

a. Xét tg vuông ABC và  tg vuông HBA có:

\(\widehat{ABH}\)chung

\(\Rightarrow\Delta ABC~\Delta HBA\)

\(\Rightarrow\frac{AB}{HB}=\frac{BC}{BA}\)

\(\Rightarrow AB^2=HB.BC\)

Cmtt:\(\Delta ABC~HAC\)

\(\Rightarrow\frac{AC}{HC}=\frac{BC}{AC}\)

\(\Rightarrow AC^2=BC.HC\)

b. lát làm tiếp nhá

d) Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)

nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}\)(1)

Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(2)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BC\cdot BH\)

b) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có 

\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{B}\right)\)

Do đó:ΔAHB\(\sim\)ΔCHA(g-g)

Suy ra: \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=HB\cdot HC\)

1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

2 Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)