Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Trên hình ta thấy : cạnh AC cùng vuông góc với cạnh DH và BA
Theo tính chất 1 của từ vuông góc đến song song, ta có:
\(DH\perp AC;BA\perp AC\)
\(\Rightarrow DH\text{//}BA\)
Vì \(DH\text{//}BA\) nên:
\(\widehat{BAD}=\widehat{ADH}\) ( vị trí so le trong )
b/ Vì \(\widehat{DHA}\) và \(\widehat{DHC}\) kề bù nên:
\(\widehat{DHA}+\widehat{DHC}=180^0\)
\(\widehat{DHA}=180^0-90^0=90^0\)
Vì \(\widehat{AHE}\) và \(\widehat{DHA}\) kề bù nên:
\(\widehat{AHE}+\widehat{DHA}=180^0\)
\(\widehat{AHE}=180^0-90^0=90^0\)
Xét tam giác \(\Delta ADH\) và \(\Delta AEH\) có:
\(DH=HE\) (gt)
\(\widehat{AHE}=\widehat{DHA}=90^0\)
\(AH\) cạnh chung
Do đó: \(\Delta ADH=\Delta AEH\)
\(\Rightarrow AD=AE\) ( cặp cạnh tương ứng )
c/ Vì \(\Delta ADH=\Delta AEH\) (chứng minh trên) suy ra:
\(\widehat{ADH}=\widehat{AEH}\) ( cặp góc tương ứng )
Vì \(\widehat{BAD}=\widehat{ADH}\) ( chứng minh câu a ) và \(\widehat{ADH}=\widehat{AEH}\)
\(\Rightarrow\widehat{BAD}=\widehat{AEH}\)
d/ Vì \(AD\) là tia phân giác của góc \(\widehat{BAC}\) nên:
\(A_1=A_2=\dfrac{A}{2}=45^0\)
Theo định lí tổng 3 góc của 1 tam giác, ta có:
\(\widehat{D_1}+\widehat{A_1}+\widehat{B}=180^0\)
\(D_1=180^0-\left(45^0+50^0\right)=85^0\)
Vậy \(\widehat{ADC}=95^0\) ( kề bù )
a) Áp dụng định lý Py-ta-go, ta có:
BC² = AB² + AC²
BC² = 3² + 4²
BC² = 9 + 16 = 25
⇒ BC =√25 = 5 cm
b) Xét ΔABD ( A = 90*) và ΔHBD ( H = 90*), có
BD chung
ABD = HBD ( BD là tia phân giác của góc ABC )
⇒ ΔABD = ΔHBD ( cạnh huyền - góc nhọn)
c) ΔHDC, có: BHD là góc vuông
⇒ DC là cạnh lớn nhất
⇒ HD < DC
Mà HD = DA (ΔABD = ΔHBD)
⇒ DA < DC (đpcm)
a) Xét ΔABCΔABC vuông tại A có :
\( A B ² + A C ² = B C ² (đ/l Py-ta-go)\)
\( ⇒ 3 ² + 4 ² = B C ²\)
\(⇒ B C ² = 25\)
\(⇒ B C = 5 ( c m )\)
Vậy \(BC=5cm\)
b) Xét \(Δ A B D và Δ H B D\)có :
\(+ ∠ B A D = ∠ B H D = 90 °\)
\(+ B D c h u n g\)
\(+ ∠ A B D = ∠ C B D \) (BD là phân giác của ∠B)
\( ⇒ Δ A B D = Δ H B D (ch-gn)\)
Vậy \(Δ A B D = Δ H B D\)
tôi chx bt lm
xin lỗi nhé
a: HD vuông góc với AC
AB vuông góc với AC
Do đó: HD//AB
=>góc BAD=góc HDA
b: Xét ΔADE có
AH vừa là đường cao, vừa là trung tuyến
nên ΔADE cân tại A
=>AD=AE
c: góc BAD=góc ADH
mà góc AEH=góc ADH
nên góc BAD=góc AEH