K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
KK
22 tháng 3 2022
a) Xét tam giác ABD và tam giác AHD có:
AB = AH ( gt )
^BAD = ^CAD ( Do AD phân giác )
AD chung
=> Tam giác ABD = tam giác AHD ( c.g.c )
=> ^ABD = ^AHB ( hai góc tương ứng )
b) Xét tam giác AHE và tam giác ABC có:
AB = AH ( gt )
^ABC chung
^ABD = ^AHD ( cmt )
=> Tam giác AHE = tam giác ABC ( g.c.g )
25 tháng 1
a: Xét ΔADH và ΔADB có
AD chung
\(\widehat{DAH}=\widehat{DAB}\)
AH=AB
Do đó: ΔADH=ΔADB
=>\(\widehat{ADH}=\widehat{ADB}\) và \(\widehat{ABD}=\widehat{AHD}\)
Xét ΔAHE vuông tại A và ΔABC vuông tại A có
AH=AB
\(\widehat{AHE}=\widehat{ABC}\)
Do đó: ΔAHE=ΔABC
=>AE=AC
=>ΔAEC cân tại A
Ta có: ΔAEC cân tại A
mà AD là đường phân giác
nên AD\(\perp\)EC
a/ Trên hình ta thấy : cạnh AC cùng vuông góc với cạnh DH và BA
Theo tính chất 1 của từ vuông góc đến song song, ta có:
\(DH\perp AC;BA\perp AC\)
\(\Rightarrow DH\text{//}BA\)
Vì \(DH\text{//}BA\) nên:
\(\widehat{BAD}=\widehat{ADH}\) ( vị trí so le trong )
b/ Vì \(\widehat{DHA}\) và \(\widehat{DHC}\) kề bù nên:
\(\widehat{DHA}+\widehat{DHC}=180^0\)
\(\widehat{DHA}=180^0-90^0=90^0\)
Vì \(\widehat{AHE}\) và \(\widehat{DHA}\) kề bù nên:
\(\widehat{AHE}+\widehat{DHA}=180^0\)
\(\widehat{AHE}=180^0-90^0=90^0\)
Xét tam giác \(\Delta ADH\) và \(\Delta AEH\) có:
\(DH=HE\) (gt)
\(\widehat{AHE}=\widehat{DHA}=90^0\)
\(AH\) cạnh chung
Do đó: \(\Delta ADH=\Delta AEH\)
\(\Rightarrow AD=AE\) ( cặp cạnh tương ứng )
c/ Vì \(\Delta ADH=\Delta AEH\) (chứng minh trên) suy ra:
\(\widehat{ADH}=\widehat{AEH}\) ( cặp góc tương ứng )
Vì \(\widehat{BAD}=\widehat{ADH}\) ( chứng minh câu a ) và \(\widehat{ADH}=\widehat{AEH}\)
\(\Rightarrow\widehat{BAD}=\widehat{AEH}\)
d/ Vì \(AD\) là tia phân giác của góc \(\widehat{BAC}\) nên:
\(A_1=A_2=\dfrac{A}{2}=45^0\)
Theo định lí tổng 3 góc của 1 tam giác, ta có:
\(\widehat{D_1}+\widehat{A_1}+\widehat{B}=180^0\)
\(D_1=180^0-\left(45^0+50^0\right)=85^0\)
Vậy \(\widehat{ADC}=95^0\) ( kề bù )