K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

áp dụng hệ thức lượng 

Ta có : 

\(AB^2=HB.BC\)\(AC^2=CH.BC\)

\(\Rightarrow\frac{HB}{HC}=\frac{AB^2}{AC^2}=\frac{BD^2}{DC^2}=\frac{9}{16}\)

\(\Rightarrow\frac{BD}{DC}=\frac{3}{4}\)

Mà DB = 75, DC = 100

vì H nằm giữa B và D nên DH = DB - HB = 75 - 63 = 12 ( cm )

5 tháng 6 2019

Ta có \(\frac{AC^2}{AB^2}=\frac{BC.HC}{BC.HB}=\frac{112}{63}=\frac{16}{9}\Rightarrow\frac{AC}{AB}=\frac{4}{3}\)

Áp dụng tính chất đường phân giác ta có:

\(\frac{DC}{DB}=\frac{AC}{AB}=\frac{4}{3}\Rightarrow\frac{DC}{4}=\frac{DB}{3}=\frac{DC+DB}{7}=\frac{175}{7}=25\)

\(\Rightarrow DB=75\left(cm\right)\Rightarrow HD=75-63=12\left(cm\right)\)

Ta có: BH+CH=BC

nên BC=63+112=175

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=11025\\AC^2=19600\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=105cm\\AC=140cm\end{matrix}\right.\)

Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{105}=\dfrac{CD}{140}\)

mà BD+CD=BC=175

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{105}=\dfrac{CD}{140}=\dfrac{BD+CD}{105+140}=\dfrac{175}{245}=\dfrac{5}{7}\)

Do đó: \(BD=75\left(cm\right)\)

Ta có: DH+BH=BD

nên DH=BD-BH=75-63=12cm

18 tháng 7 2015

A B H D C

BC = BH + HC = 175 km 

Áp dụng Hệ thức lượng trong tam giác vuông ABC có: AB2 = BH.BC = 63.175 => AB = 105 km

AC2 = CH. BC = 112. 175 => AC = 140 km

AD là p/g của góc A => BD / DC = AB/ AC = 105/140 = 3/4 => BD = 3/4 . DC

Mà BD + DC = BC = 175 => 3/4 . DC + DC = 175 => 7/4 . DC = 175 => DC = 175 : 7/4 = 100

Vì CD < CH => D nằm giữa C và H => DH = CH - CD = 112 - 100 = 12 km

22 tháng 8 2017
bài làm
A=1.2.3+2.3.4+3.4.5+...+98.99.1004A=1.2.3.4+2.3.4.4+3.4.5.4+...+98.99.100.44A=1.2.3.(4-0)+2.3.4.(5-1)+...+98.99.100.(101-97)4A=1.2.3.4+2.3.4.5-1.2.3.4+...+98.99.100.101-97.98.99.1004A=1.2.3.4-1.2.3.4+2.3.4.5-...-97.98.99.100+98.99.100.1014A=98.99.100.1014A=97990200A=979902004979902004A=24497550
22 tháng 7 2018

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

22 tháng 7 2018

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)

12 tháng 9 2016

gọi độ dài HD=x,suy ra BD=63+x ;CD=112-x

theo hệ thứ lượng trong tam giác vuông:AB^2=BH*BC=63*(63+112)=11025 nên AB=105

                                                          AC^2=CH*BC=19600; nên AC=140

do AD là đường phân giác nên BD/CD=AB/AC  hayBD*AC=CD*AB

do đó  (63+x)*140=(112-x)*105 .giải ra ta được x=12. Vậy HD=12 cm

12 tháng 9 2016

cảm ơn nha.

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC=\dfrac{4.8^2}{3.6}=6.4\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=36\\AC^2=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=6\left(cm\right)\\AC=8\left(cm\right)\end{matrix}\right.\)

Ta có: BD+CD=BC(D nằm giữa B và C)

nên BC=7,5+10=17,5(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{AB}{AC}=\dfrac{7.5}{10}=\dfrac{3}{4}\)

\(\Leftrightarrow AB=\dfrac{3}{4}AC\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2\cdot\dfrac{25}{16}=17.5^2\)

\(\Leftrightarrow AC=14\left(cm\right)\)

\(\Leftrightarrow AB=\dfrac{3}{4}\cdot AC=\dfrac{3}{4}\cdot14=10,5\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB\cdot AC=AH\cdot BC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH\cdot17.5=10.5\cdot14\\BH\cdot17.5=10.5^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}AH=8,4\left(cm\right)\\BH=6,3\left(cm\right)\end{matrix}\right.\)

 

9 tháng 11 2021

tính chất tia phân giác của tam giác là gì vậy bạn