K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác AHDK có

\(\widehat{KAH}=90^0\)(\(\widehat{BAC}=90^0\), H∈AB, K∈AC)

\(\widehat{AHD}=90^0\)(DH⊥AB)

\(\widehat{AKD}=90^0\)(DK⊥AC)

Do đó: AHDK là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)

⇒HK=AD(hai đường chéo của hình chữ nhật AHDK)

b) Để hình chữ nhật AHDK là hình vuông thì AD là tia phân giác của \(\widehat{KAH}\)

hay AD là tia phân giác của \(\widehat{BAC}\)

Vậy: Khi D là chân đường phân giác kẻ từ A xuống BC thì AHDK là hình vuông

c) Ta có: HK=AD(cmt)

mà HK ngắn nhất

⇔AD ngắn nhất

Ta có: ΔADH vuông tại H có AD là cạnh huyền

⇔AD là cạnh lớn nhất trong ΔADH

hay AD>AH

Vậy thì AD ngắn nhất khi AD=AH

hay D trùng với H

⇒HK có độ dài ngắn nhất khi D là chân đường vuông góc kẻ từ A xuống BC

2 tháng 5 2020

Cảm ơn bạn nhiều nhaa!

A B C D H K

a)Ta có:\(HD\perp AH;AK\perp AH\Rightarrow HD//AK\)

\(AK\perp KD\Rightarrow HD\perp KD\)

Suy ra tứ giác AHDK là hình chữ nhật suy ra HK=AD(đpcm)

b)Ta có vì AHDK là hình vuông nên AH=HD=DK=AK

Suy ra tam giác AHD vuông cân tại H

\(\Rightarrow\widehat{HAD}=\widehat{HDA}=45^0\)

\(\Rightarrow\widehat{DAK}=90^0-45^0=45^0\)

\(\Rightarrow\widehat{HAD}=\widehat{DAK}\)hay AD là tia phân giác của góc A

Vậy AHDK là hình vuông khi và chỉ khi AD là tia phân giác của góc A

c)Ta có:Để HK nhỏ nhất thì AD nhỏ nhất

Suy ra AD vuông góc với BC

Vậy HK nhỏ nhất khi và chỉ khi D là hình chiếu của A trên BC

15 tháng 10 2018

Em tham khảo tại link dưới đây nhé:

Câu hỏi của Trần Thị Vân Ngọc - Toán lớp 8 - Học toán với OnlineMath

20 tháng 11 2018

a) Xét tứ giác DMEA có 3 góc vuông nên DMEA là hình chữ nhật.

Theo tính chất hình chữ nhật thì AM = DE.

b) Do DMEA là hình chữ nhật nên DE giao AM tại trung điểm mỗi đường. Do đó, I cũng là trung điểm AM.

Gọi K, H lần lượt là trung điểm của AB và AC.

Xét tam giác BAM có K, I lần lượt là trung điểm của AB và AM nên KI là đường trung bình.

Vậy IK// BC. Tương tự IH//BC.

Lại có KE//BC nên I thuộc KH.

Do KH cố định nên ta có: Khi M di chuyển trên đoạn BC thì I di chuyển trên đoạn KH.

c) Ta đã có DE = AM nên DE ngắn nhất khi và chỉ khi AM có độ dài ngắn nhất.

Lại có AM là đường xiên nên luôn luôn lớn hơn hoặc bằng đường cao AH.

Vậy thì AM có độ dài ngắn nhất khi AM trung với AH tức là M trùng H.

=> DE có độ dài ngắn nhất khi M là chân đường vuông góc hạ từ A xuống BC.

3 tháng 6 2017

Giải bài 84 trang 109 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt) (theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

d) Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).

31 tháng 12 2018

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt) (theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

d) Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).

31 tháng 12 2018

A E F C D B

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt)

(theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu  ∆ABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật vừa là hình thoi).

16 tháng 6 2020

A B C F D E

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE ( gt ) (theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu \(\Delta ABC\) vuông tại A thì AEDF là hình chữ nhật ( vì là hình bình hành có một góc vuông )

d) Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông ( vì vừa là hình chữ nhật, vừa là hình thoi )

a: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

b: Ta có: ΔABC vuông tại A

mà AD là đường trung tuyến

nên AD=BC/2=5(cm)

mà AD=EF(AEDF là hình chữ nhật)

nên EF=5cm

c: Để AEDF là hình vuông thì AD là tia phân giác của góc FAE

=>AD là tia phân giác của góc BAC

Vậy: Khi D là chân đường phân giác kẻ A xuống BC thì AEDF là hình vuông

31 tháng 12 2018

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt) (theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).

21 tháng 4 2017

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt)

(theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu ∆ABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật vừa là hình thoi).

10 tháng 11 2017

Nguyên bản văn mẫu nhe bạn!!!