K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2021

A B C E F N M O D G

1. Vì \(\widehat{ADB}=\widehat{AEB}=90^0\) nên tứ giác AEBD nội tiếp đường tròn đường kính AB.

2. Tứ giác AEBD, AFCD nội tiếp và BE, CF tiếp xúc (O), suy ra:

\(\widehat{AED}=\widehat{ABC}=\widehat{ACF}=\widehat{ADF};\widehat{AFD}=\widehat{ADE}\)

Do đó \(\Delta\)EAD ~ \(\Delta\)DAF, suy ra \(AD^2=AE.AF\)

3. Ta có \(AE.AF=\left(AM+AN\right)^2=\frac{\left(AE+AF\right)^2}{4}\Leftrightarrow\left(AE-AF\right)^2=0\Leftrightarrow AE=AF\)

Từ đó \(\Delta\)AEG = \(\Delta\)AFG (Cạnh huyền.Cạnh góc vuông), suy ra GA là phân giác góc BGC

Mà \(\Delta\)GBC cân tại G nên GA là trung trực BC hay \(\Delta\)ABC cân tại A

Vậy đường cao AD trùng với AO hay A,O,D thẳng hàng.

13 tháng 6 2021

1) Ta có: \(\angle AEB+\angle ADB=90+90=180\Rightarrow AEBD\) nội tiếp

2) Tương tự ta chứng minh được: \(ADCF\) nội tiếp

\(\Rightarrow\angle ADF=\angle ACF=\angle ABC\)

3) Ta có: \(\angle AED=\angle ABC=\angle ADF\)

Tương tự \(\Rightarrow\angle ADE=\angle AFD\)

Xét \(\Delta ADE\) và \(\Delta AFD:\) Ta có: \(\left\{{}\begin{matrix}\angle ADE=\angle AFD\\\angle AED=\angle ADF\end{matrix}\right.\)

\(\Rightarrow\Delta ADE\sim\Delta AFD\left(g-g\right)\Rightarrow\dfrac{AD}{AF}=\dfrac{AE}{AD}\Rightarrow AD^2=AE.AF\)

4) \(\Delta ADE\sim\Delta AFD\Rightarrow\angle DAE=\angle DAF\)

\(\Rightarrow AD\) là phân giác \(\angle EAF\)

Vì M,N là trung điểm AE,AF \(\Rightarrow\left\{{}\begin{matrix}AM=\dfrac{1}{2}AE\\AN=\dfrac{1}{2}AF\end{matrix}\right.\)

Theo đề: \(AD=AM+AN\Rightarrow AD^2=\left(AM+AN\right)^2\)

\(\Rightarrow AE.AF=\dfrac{1}{4}\left(AE+AF\right)^2\Rightarrow4AE.AF=\left(AE+AF\right)^2\)

mà \(\left(AE+AF\right)^2\ge4AE.AF\) (BĐT Cô-si) 

\(\Rightarrow AE=AF\Rightarrow\Delta AEF\) cân tại A có \(AD\) là phân giác \(\angle EAF\)

\(\Rightarrow AD\) là trung trực \(EF\Rightarrow AD\bot EF\) mà \(AD\bot BC\)

\(\Rightarrow BC\parallel EF\) 

Ta có: \(\angle EBC=\angle EBA+\angle ABC=\angle ACB+\angle ACF=\angle FCB\)

\(\Rightarrow BCFE\) là hình thang cân có \(AD\) là trung trực EF

\(\Rightarrow AD\) là trung trực BC mà \(O\in\) trung trực BC

\(\Rightarrow A,O,D\) thẳng hàng

undefined