Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADI vuông tại D và ΔAEI vuông tại E có
AI chung
góc DAI=góc EAI
=>ΔADI=ΔAEI
=>AD=AE
b: BC=căn 8^2+15^2=17cm
P=(8+15+17)/2=20(cm)
S ABC=1/2*8*15=60cm2
=>AI=S/P=3cm
Xét tứ giác ADIE có
góc ADI=góc AEI=góc DAE=90 độ
AI là phân giác của góc DAE
=>ADIE là hình vuông
=>AD^2+AE^2=AI^2
=>2*AD^2=9
=>AD=3/căn 2
=>AE=3/căn 2
a) Ta có: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}\)(BE là tia phân giác của \(\widehat{ABC}\))
\(\widehat{ACD}=\widehat{BCD}=\dfrac{\widehat{ACB}}{2}\)(CD là tia phân giác của \(\widehat{ACB}\))
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔBAC cân tại A)
nên \(\widehat{ABE}=\widehat{CBE}=\widehat{ACD}=\widehat{BCD}\)
Xét ΔADC vuông tại A và ΔAEB vuông tại A có
AC=AB(ΔABC vuông cân tại A)
\(\widehat{ACD}=\widehat{ABE}\)(cmt)
Do đó: ΔADC=ΔAEB(Cạnh góc vuông-góc nhọn kề)
Suy ra: AD=AE(Hai cạnh tương ứng) và CD=BE(Hai cạnh tương ứng)