K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2021

 Gọi \(A\left(a;0\right),\left(B;b\right)\left(a,b>0\right)\)

Pt đường thẳng cần tìm có dạng :

\(\dfrac{x}{a}+\dfrac{y}{b}=1\)

Vì đường thẳng qua M(3;2) nên:

\(\dfrac{3}{a}+\dfrac{2}{b}=1\left(1\right)\)

a) \(0A+0B=12\Leftrightarrow a+b=12\Leftrightarrow a=12-b\left(2\right)\)

Thay (2) vào (1) ta có: \(\dfrac{3}{12-b}+\dfrac{2}{b}=1\)

\(\Leftrightarrow3b+2\left(12-b\right)=\left(12-b\right)b\)

\(\Leftrightarrow b^2-11b+24=0\Leftrightarrow b=3hayb=8\)

+ Với b=3=>a=9 => \(\dfrac{x}{9}+\dfrac{y}{3}=1\Leftrightarrow x+3y-9=0\)

+ Với b=8=>a=4 => \(\dfrac{x}{4}+\dfrac{y}{8}=1\Leftrightarrow2x+y-8=0\)

b) \(S_{\Lambda OAB}=\dfrac{1}{2}0A.0B=\dfrac{1}{2}ab=12\Leftrightarrow a=\dfrac{24}{b}\left(3\right)\)

Thay (3) vào (1) ta có: \(\dfrac{3b}{24}+\dfrac{2}{b}=1\Leftrightarrow b^2+16=8b\Leftrightarrow\left(b-4\right)^2=0\Leftrightarrow b=4\)

\(\Rightarrow a=6\Rightarrow\dfrac{x}{6}+\dfrac{y}{4}=1\Leftrightarrow2x+3y-12=0\)

Xét ΔOAI và ΔOBI có

OA=OB

OI chung

AI=BI

Do đó: ΔOAI=ΔOBI

Suy ra: \(\widehat{AOI}=\widehat{BOI}\)

hay OI là tia phân giác của góc xOy

a: Xét ΔOAD và ΔOBC có 

OA=OB

\(\widehat{AOD}\) chung

OD=OC

Do đó: ΔOAD=ΔOBC

Suy ra: AD=BC

b: Xét ΔABD và ΔCDB có

AB=CD

\(\widehat{ABD}=\widehat{CDB}\)

BD chung

Do đó: ΔABD=ΔCDB

Suy ra: \(\widehat{IDB}=\widehat{IBD}\)

=>ΔIBD cân tại I

=>IB=ID

Ta có: IA+ID=AD

IB+IC=CB

mà AD=CB

và ID=IB

nên IA=IC

c: Xét ΔOIB và ΔOID có 

OI chung

IB=ID

OB=OD

Do đó: ΔOIB=ΔOID

Suy ra: \(\widehat{BOI}=\widehat{DOI}\)

hay OI là tia phân giác của góc xOy

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE

11 tháng 5 2016

các bạn ơi giúp mình với

2 tháng 1 2017

a) OD // CE (_|_ OE) và CD // OE (_|_OD)

=> ODCE là hình bình hành . Mà O^ = 90o

=> ODCE là hình chữ nhật (*) => CE=OD

b) (*) => DCE^ = 90o hay CE_|_ CD

c) tam giác ADC và tam giác CEB:

AD = CE (=DO)

EDC^ = CEB^ = 90o

DC=EB (=OE)

=> tam giác ADC= tam giác CEB (2 cạnh góc vuông)

=> AC = CB ( 2 cạnh tương ứng)

d) AD //= CE (cmt) => tứ giác ACED là hình bình hành => AC // DE (*)

e) DC //= EB => tứ giác DCBE là hình bình hành

=> DE//BC ( 2 cạnh đối) (**)

Từ (*) và (**) => A,C,B thẳng hàng

22 tháng 12 2016

cái này toán lớp 10 á?

22 tháng 12 2016

ko mà toán 7

23 tháng 5 2019

Tớ không vẽ hình được bạn tự vẽ nhé

a, Vì K thuộc đường tròn đường kính AB

=> AKB=90

Mà CHA=90

=> tứ giác AKNH nội tiếp

Vậy tứ giác AKNH nội tiếp

b,Vì 2 tiếp tuyến cắt nhau tại M 

nên \(OM\perp AC\)

=>\(OM//CB\)

=> tam giác AMO đồng dạng tam giác HCB

=> ĐPCM

c, Tứ giác AMKI nội tiếp do AIM=AKM=90

KIC=AMK

MÀ AMK=KNC do AM song song CH

=> KIC=KNC

=> tứ giác KINC nội tiếp 

=>KNI=KCI

Mà  KCI=KBA

=> KNI=KBA

=> IN song song AB

Vậy IN song song AB

Mình không viết kí hiệu góc nên bạn thông cảm