K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2021

 Gọi \(A\left(a;0\right),\left(B;b\right)\left(a,b>0\right)\)

Pt đường thẳng cần tìm có dạng :

\(\dfrac{x}{a}+\dfrac{y}{b}=1\)

Vì đường thẳng qua M(3;2) nên:

\(\dfrac{3}{a}+\dfrac{2}{b}=1\left(1\right)\)

a) \(0A+0B=12\Leftrightarrow a+b=12\Leftrightarrow a=12-b\left(2\right)\)

Thay (2) vào (1) ta có: \(\dfrac{3}{12-b}+\dfrac{2}{b}=1\)

\(\Leftrightarrow3b+2\left(12-b\right)=\left(12-b\right)b\)

\(\Leftrightarrow b^2-11b+24=0\Leftrightarrow b=3hayb=8\)

+ Với b=3=>a=9 => \(\dfrac{x}{9}+\dfrac{y}{3}=1\Leftrightarrow x+3y-9=0\)

+ Với b=8=>a=4 => \(\dfrac{x}{4}+\dfrac{y}{8}=1\Leftrightarrow2x+y-8=0\)

b) \(S_{\Lambda OAB}=\dfrac{1}{2}0A.0B=\dfrac{1}{2}ab=12\Leftrightarrow a=\dfrac{24}{b}\left(3\right)\)

Thay (3) vào (1) ta có: \(\dfrac{3b}{24}+\dfrac{2}{b}=1\Leftrightarrow b^2+16=8b\Leftrightarrow\left(b-4\right)^2=0\Leftrightarrow b=4\)

\(\Rightarrow a=6\Rightarrow\dfrac{x}{6}+\dfrac{y}{4}=1\Leftrightarrow2x+3y-12=0\)

NV
24 tháng 3 2021

Do d qua M nên pt có dạng: \(y=kx-2k+4\)

Tọa độ A: \(A\left(\dfrac{2k-4}{k};0\right)\) , tọa độ B: \(B\left(0;-2k+4\right)\)

Để A và B nằm trên tia Ox, Oy \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2k-4}{k}>0\\-2k+4>0\end{matrix}\right.\) \(\Rightarrow k< 0\)

Khi đó:

\(T=OA+OB=\dfrac{2k-4}{k}+\left(-2k+4\right)=6+2\left(-k+\dfrac{2}{-k}\right)\ge6+4\sqrt{\left(-k\right)\left(\dfrac{2}{-k}\right)}=6+4\sqrt{2}\)

Dấu "=" xảy ra khi \(-k=\dfrac{2}{-k}\Leftrightarrow k=-\sqrt{2}\)

Phương trình d: \(k=-\sqrt{2}x+4+2\sqrt{2}\)

NV
21 tháng 7 2021

Đề bài sai, tổng OA+OB chỉ có giá trị nhỏ nhất, không có giá trị lớn nhất

NV
22 tháng 7 2021

Do d cắt 2 trục, gọi pt d có dạng: \(y=ax+b\) (\(a\ne0\))

d đi qua M nên:  \(4a+b=1\Rightarrow b=-4a+1\Rightarrow y=ax-4a+1\)

Hoành độ A là nghiệm: \(ax_A-4a+1=0\Rightarrow x_A=\dfrac{4a-1}{a}\)

Tung độ B là nghiệm: \(y_A=a.0-4a+1=-4a+1\)

Do A; B nằm trên các tia Ox, Oy \(\Rightarrow\left\{{}\begin{matrix}\dfrac{4a-1}{a}>0\\-4a+1>0\end{matrix}\right.\) \(\Rightarrow a< 0\)

Khi đó ta có: \(\left\{{}\begin{matrix}OA=x_A=\dfrac{4a-1}{a}\\OB=y_A=-4a+1\end{matrix}\right.\)

\(S=OA+OB=\dfrac{4a-1}{a}-4a+1=5+\left(-4a+\dfrac{1}{-a}\right)\ge5+2\sqrt{\dfrac{-4a}{-a}}=9\)

\(S_{min}=9\) khi \(-4a=\dfrac{1}{-a}\Leftrightarrow a=-\dfrac{1}{2}\)

Phương trình d: \(y=-\dfrac{1}{2}x+3\)

AH
Akai Haruma
Giáo viên
3 tháng 2 2021

Lời giải:

Vì ĐT cần tìm đi qua $M(1,4)$ nên PTĐT có dạng:

$a(x-1)+b(y-4)=0\Leftrightarrow ax+by-(a+4b)=0(d)$ với $a^2+b^2\neq 0$

$A\in Ox\Rightarrow y_A=0$

$A\in (d)\Rightarrow ax_A+by_A-(a+4b)=0$

$\Leftrightarrow ax_A-(a+4b)=0\Rightarrow x_A=\frac{a+4b}{a}$

$B\in Oy\Rightarrow x_B=0$

$B\in (d)\Rightarrow ax_B+by_B-(a+4b)=0$

$\Leftrightarrow by_B-(a+4b)=0\Rightarrow y_B=\frac{a+4b}{b}$

Diện tích tam giác $ABC$:

$\frac{OB.OA}{2}=\frac{|y_B|.|x_A|}{2}=|\frac{(a+4b)^2}{ab}|\geq |\frac{(2\sqrt{4ab})^2}{ab}|=16$

Vậy $S_{OAB}$ min $=16$. Giá trị này đạt tại $a=4b$

Thay vào PTĐT $(d)$:

$4bx+by-(4b+4b)=0$

$\Leftrightarrow b(4x+y-8)=0$. Do $a=4b$ và $a^2+b^2\neq 0$ nên $b\neq 0$

$\Rightarrow 4x+y-8=0$

Đây chính là PTĐT cần tìm.

19 tháng 2 2022

Mình chưa hiểu lắm dấu = thứ 2 ở dòng dưới cái dòng diện tích tam giác ABC ạ, bạn giải thích dùm mình với

NV
21 tháng 3 2021

Đường thẳng d qua M có dạng: \(y=ax+b\)

Thế tọa độ M: \(1=a+b\Rightarrow b=1-a\Rightarrow y=ax+1-a\) với \(a\ne\left\{0;1\right\}\)

Tọa độ A: \(A\left(\dfrac{a-1}{a};0\right)\) ; tọa độ B: \(B\left(0;1-a\right)\) \(\Rightarrow a< 0\)

\(\Rightarrow OA=\dfrac{a-1}{a}\) ; \(OB=1-a\)

\(S_{OAB}=\dfrac{1}{2}OA.OB=2\Leftrightarrow\left(\dfrac{a-1}{a}\right)\left(1-a\right)=4\)

\(\Leftrightarrow\left(a-1\right)^2+4a=0\Leftrightarrow a^2+2a+1=0\Rightarrow a=-1\)

\(\Rightarrow y=-x+2\)

NV
7 tháng 4 2021

Phương trình đường thẳng d có dạng:

\(y=kx-2k+1\)

Tọa độ A và B có dạng: \(A\left(\dfrac{2k-1}{k};0\right)\) ; \(B\left(0;-2k+1\right)\)

Để A, B nằm trên các tia Ox, Oy \(\Rightarrow\left\{{}\begin{matrix}\dfrac{2k-1}{k}>0\\-2k+1>0\end{matrix}\right.\) \(\Rightarrow k< 0\)

Khi đó ta có: \(S_{OAB}=\dfrac{1}{2}OA.OB=4\Leftrightarrow OA.OB=8\)

\(\Rightarrow\left(\dfrac{2k-1}{k}\right)\left(-2k+1\right)=8\)

\(\Leftrightarrow4k^2-4k+1=-8k\Leftrightarrow4k^2+4k+1=0\Rightarrow k=-\dfrac{1}{2}\)

Phương trình d: \(y=-\dfrac{1}{2}x+2\)

9 tháng 3 2023

Help